Thank you for posting your question here at brainly. Below is the solution:
<span>moles HClO4 = 0.100 L x 0.18 M = 0.018
moles LiOH = 0.030 L x 0.27 = 0.0081
moles H+ in excess = 0.018 - 0.0081 = 0.0099
total volume = 0.130 L
[H+] = 0.0099/ 0.130= 0.0762 M
pH = 1.12</span>
Answer:
For neutral atoms, the number of valence electrons is equal to the atom's main group number. The main group number for an element can be found from its column on the periodic table. For example, carbon is in group 4 and has 4 valence electrons. Oxygen is in group 6 and has 6 valence electrons.
Explanation:
hope this help
Mass = no. of moles x molecular weight
m = n x Mr
m = 2.5 mol x (24 + [16 x 2])
m = 140g
Answer:
1.85 g
Explanation:
The strategy here is to utilize the Henderson-Hasselbach equation
pH = pKa + log [A⁻] / [HA]
to calculate the ratio log [A⁻] / [HA], and from there to calculate the concentration [A⁻] and finally the mass of NaNO₂ from the number of moles assuming the final buffer volume is 50.0 mL ( that is the volume does not change by the addition of NaNO₂)
pH = pKa + log [NO₂⁻]/[HNO₂]
3.13 = 3.40 + log [NO₂⁻]/[HNO₂]
- 0.27 = log [NO₂⁻]/[HNO₂]
taking the inverse log function to both sides of this equation
0.54 = [NO₂⁻]/[HNO₂]
Now [HNO₂] = 1.0 M, therefore [NO₂⁻] = [NaNO₂] =
0.54 x 1.0 M = 0.54 M
from M = mol / L we get
mol = 0.54 mol/L x 0.050L = 0.027 mol
the molar mass of NaNO₂ is = 68.99 g / mol, so the mass of 0.027 mol is
0.027 mol x 68.99 g/mol = 1.85 g