Yup! You got it so far! Keep it up! <3
Answer:
The values for expression is h = - 2 and k = 5
Step-by-step explanation:
Given algebraic expression can be written as :
2 x³ - 10 x² + 11 x - 7 = ( x - 4 ) × ( 2 x² + h x + 3 ) + k
Now opening the bracket
Or, 2 x³ - 10 x² + 11 x - 7 = x × ( 2 x² + h x + 3 ) - 4 × ( 2 x² + h x + 3 ) + k
Or, 2 x³ - 10 x² + 11 x - 7 = 2 x³ + h x² + 3 x - 2 x² - 4 h x - 12 +k
Or , 2 x³ - 10 x² + 11 x - 7 = 2 x³ + ( h - 2 ) x² + ( 3 - 4 h ) x - 12 + k
Now, equating the equation both sides
I.e - 10 = ( h - 2 )
Or , h - 2 = - 10
I.e , h = - 10 + 2
∴ h = - 2
Again , 11 = ( 3 - 4 h )
or, 11 = 3 - 4 h
or, 11 - 3 = - 4 h
or, 8 = - 4 h
∴ h = 
I.e h = - 2
Again
- 7 = - 12 + k
Or, k = - 7 + 12
∴ k = 5
Hence The values for expression is h = - 2 and k = 5 . Answer
The answer is a if the line is dotted/dashed. The answer is c if the line isn't dotted/dashed.
Answer:
A) 0
Step-by-step explanation:
When x is divided by 11, we have a quotient of y and a remainder of 3
x/11 = y + 3
x = 11y + 3 ........(1)
When x is divided by 19, we have a remainder of 3 also
x/19 = p + 3 (p = quotient)
x = 19p + 3 ..........(2)
Equate (1) and (2)
x = 11y + 3 = 19p + 3
11y + 3 = 19p + 3
11y = 19p + 3 -3
11y = 19p
Divide both sides by 11
11y/11 = 19p/11
y = 19p/11
y and p are integers. 19 is a prime number. P/11 is also an integer
y = 19(integer)
This implies that y is a multiple of 19. When divided by 19, there is no remainder. The remainder is 0
I’m pretty sure it would be 1/5, because scaling is changing the y values of the function. If the y value of the original is 10, you need to multiply/scale the new one by 1/5 to get the y value of 2