Heat required to raise the temperature = 159.505 J
<h3>Further explanation</h3>
Given
c = specific heat of Beryllium = 1.825 J/g C
m = mass = 2.3 g
Δt = Temperature difference : 60 - 22 = 38 °C
Required
Heat required
Solution
Heat can be formulated
Q = m.c.Δt
Input the value :
Q = 2.3 x 1.825 x 38
Q = 159.505 J
Answer:
Explanation:
C + O2 → CO2
Mole of C = 24 g/(12 g/mole)
Mole of C = 2 mole
Mole of molecular O2 = 74 g/(32 g/mole)
Mole of molecular O2 = 2.3125 mole
Since mole of C < mole of O2, then C being the limiting reagent.
From the reaction, it shows that mole ratio between C and O2 = 1 : 1.
So, 2 moles of C will stoichiometrically react with 2 moles of O2 to generate 2 moles of CO2.
Avogadro's law states that :"equal volumes of all gases, at the same temperature and pressure, have the same number of molecules i.e. 6.02 x 10^23 molecules/mole.
Therefore, 2 moles of CO2 contain 2 moles x 6.02 x 10^23 molecules/mole = 1.204 x 10^24 molecules of CO2 is formed.
The molarity of the solution will be 0.72 m.
The majority of reactions take place in solutions, making it crucial to comprehend how the substance's concentration is expressed in a solution when it is present. The number of chemicals in a solution can be stated in a variety of ways, including.
The symbol for it is M, and it serves as one of the most often used concentration units. Its definition states how many moles of solute there are in a liter of solution.
Given data:

Molarity can be determined by the formula:

where, M is molarity and V is volume.
Put the value of given data in above equation.
57.3 × 0.497 m = M × 39.5 L
M = 0.72 m
Therefore, the molarity of the solution will be 0.72 m
To know more about molarity
brainly.com/question/18648803
#SPJ4
Answer:- Atomic number for sulfur is 16 and it's electron configuration is
. Here, there are total for electrons in 3p and the set of quantum numbers for these 4 electrons would be as..
For the first electron of 3p-
n = 3, l = 1, ml = -1 and ms = +(1/2)
for the second electron of 3p-
n = 3, l = 1, ml = 0 and ms = +(1/2)
for the third electron of 3p-
n = 3, l = 1, ml = +1 and ms = +(1/2)
and for the fourth electron of 3p-
n = 3, l = 1, ml = -1 and ms = -(1/2)
Answer:
True => ΔH°f for C₆H₆ = 49 Kj/mole
Explanation:
See Thermodynamic Properties Table in appendix of most college level general chemistry texts. The values shown are for the standard heat of formation of substances at 25°C. The Standard Heat of Formation of a substance - by definition - is the amount of heat energy gained or lost on formation of the substance from its basic elements in their standard state. C₆H₆(l) is formed from Carbon and Hydrogen in their basic standard states. All elements in their basic standard states have ΔH°f values equal to zero Kj/mole.