Why can't elements be separated into smaller parts using chemical means? Too much energy is required, since you'd have to break them down into protons, neutrons, and electrons. You can get this much energy together with nuclear reactions, but not by chemical means.
Answer:
gases
Explanation:
The greenhouse effect works much the same way on Earth. Gases in the atmosphere, such as carbon dioxide, trap heat similar to the glass roof of a greenhouse. These heat-trapping gases are called greenhouse gases. ... That's what keeps our Earth a warm and cozy 58 degrees Fahrenheit (14 degrees Celsius), on average.
Answer : The concentration of HI (g) at equilibrium is, 0.643 M
Explanation :
The given chemical reaction is:

Initial conc. 0.10 0.10 0.50
At eqm. (0.10-x) (0.10-x) (0.50+2x)
As we are given:

The expression for equilibrium constant is:
![K_c=\frac{[HI]^2}{[H_2][I_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BHI%5D%5E2%7D%7B%5BH_2%5D%5BI_2%5D%7D)
Now put all the given values in this expression, we get:

x = 0.0713 and x = 0.134
We are neglecting value of x = 0.134 because the equilibrium concentration can not be more than initial concentration.
Thus, we are taking value of x = 0.0713
The concentration of HI (g) at equilibrium = (0.50+2x) = [0.50+2(0.0713)] = 0.643 M
Thus, the concentration of HI (g) at equilibrium is, 0.643 M
CH3OCH3 and C2H5OH are isomers. They have same molecular formula. But with another formation.