Answer:
The boiling point of a 8.5 m solution of Mg3(PO4)2 in water is<u> 394.91 K.</u>
Explanation:
The formula for molal boiling Point elevation is :

= elevation in boiling Point
= Boiling point constant( ebullioscopic constant)
m = molality of the solution
<em>i =</em> Van't Hoff Factor
Van't Hoff Factor = It takes into accounts,The abnormal values of Temperature change due to association and dissociation .
In solution Mg3(PO4)2 dissociates as follow :

Total ions after dissociation in solution :
= 3 ions of Mg + 2 ions of phosphate
Total ions = 5
<em>i =</em> Van't Hoff Factor = 5
m = 8.5 m
= 0.512 °C/m
Insert the values and calculate temperature change:



Boiling point of pure water = 100°C = 273.15 +100 = 373.15 K

= 373.15 K[/tex]
21.76 = T - 373.15
T = 373.15 + 21.76
T =394.91 K
Momentum = (mass) x (velocity) = (1,100) x (30) =
33,000
kg-m/sec due east
Yes you add water to calcium oxide it makes calcium hydroxide
Answer:
1.53 atm
Explanation:
From the question given above, the following data were obtained:
Volume = constant
Initial pressure (P₁) = stp = 1 atm
Initial temperature (T₁) = 273 K
Final temperature (T₂) = 144 °C = 144 °C + 273 = 417 K
Final pressure (P₂) =?
Since the volume is constant, the final pressure can be obtained as follow:
P₁ / T₁ = P₂ / T₂
1 / 273 = P₂ / 417
Cross multiply
273 × P₂ = 417
Divide both side by 273
P₂ = 417 / 273
P₂ = 1.53 atm
Therefore, the final pressure (i.e the pressure inside the hot water bottle) is 1.53 atm.