it allows only a reduced number of electrons to flow through it.
Answer:
Its inductance L = 166 mH
Explanation:
Since a current, I = 0.698 A is obtained when a voltage , V = 5.62 V is applied, the resistance of the coil is gotten from V = IR
R = V/I = 5.62/0.698 = 8.052 Ω
Since we have a current of I' = 0.36 A (rms) when a voltage of V' = 35.1 V (rms) is applied, the impedance Z of the coil is gotten from
V₀' = I₀'Z where V₀ = maximum voltage = √2V' and I₀ = maximum current = √2I'
Z = V'/I' = √2 × 35.1 V/√2 × 0.36 V = 97.5 Ω
WE now find the reactance X of the coil from
Z² = X² + R²
X = √(Z² - R²)
= √(97.5² - 8.05²)
= √(9506.25 - 64.8025)
= √9441.4475
= 97.17 Ω
Now, the reactance X = 2πfL where f = frequency of generator = 93.1 Hz and L = inductance of coil.
L = X/2πf
= 97.17/2π(93.1 Hz)
= 97.17 Ω/584.965 rad/s
= 0.166 H
= 166 mH
Its inductance L = 166 mH
Answer:
How long does the ball fall is t_2 = 13.66 (s).
From what height is the ball originally dropped is h= 913.90 (m).
Explanation:
To understand processes responsible for formation of different landforms in the past as well as present. To have scientific landuse for present and future.
The differential distribution of ions across the cell membrane is due to the "resting membrane potential".
<u>Option: C</u>
<u>Explanation:</u>
The unequal allocation of charged particles like ions between the internal and external portion of cell, and by the varying membrane permeability to various ion forms, understood as resting membrane potential.
Within a sleeping brain, Na+ and K+ ions exhibit concentration gradients throughout the membrane, which push their gradients down through channels, resulting in a differentiation of the charges that generates the resting potential. With K+ than Na+ ions, the membrane is even more permeable, so the resting potential is similar to potassium ion's equilibrium potential.