Answer:
4 m, 1.71 m and 6.29 m
Explanation:
Let L = 8 m be the distance between the two speakers. Let x be the distance from speaker A of constructive interference. The distance to speaker B from the point of constructive interference is thus x₁ = L - x.
There is constructive interference when the distance x₁ - x = nλ where n = is an integer and λ = wavelength L - x
x₁ - x = nλ
L - x - x = nλ
L - 2x = nλ
x = (L - nλ)/2 = (L - nv/f)/2. where v = speed of wave = 343 m/s and f = frequency = 75 Hz
The distance from A where constructive interference would occur starts from when
n = 0
x₂ = (L - nv/f)/2 = (8 - 0 × 343/75)/2 = (8 - 0)/2 = 8/2 = 4 m
n = 1
x₃ = (L - nv/f)/2 = (8 - 1 × 343/75)/2 = (8 - 4.57)/2 = 3.43/2 = 1.71 m
when n = 2
x₄ = (L - nv/f)/2 = (8 - 2 × 343/75)/2 = (8 - 9.14)/2 = -1.15/2 = -0.57 m
So the value at n = 2 is not included.
The third point occurs at x₅ = L - x₃ where x₃ = 1.71 m is the distance away from point B where constructive interference also occurs. (since it is symmetrical about the point x₂ = 4 m
x₅ = L - x₃ = 8 - 1.71 = 6.29 m
Elastic collisions are collisions in which both
momentum and kinetic energy are conserved. I think the correct answer
from the choices listed above is option A. Two <span>glass marbles bounce off each other is an example of an elastic collision. Hope this answers the question.
I hope this helps! <3
</span>
Answer:
Independent Variable - eating reakfast
Dependent Variable - ability to learn
Constant Variable - going to school
Explanation:
Answer:
1.) Total distance = 70 m
2.) Total displacement = +30m
Explanation:
Distance is a scaler quantity. That is, we will be concerned about its magnitude only and not direction.
Total distance = 10 + 20 + 40 = 70 m
While displacement is a vector quantity. We will consider both the magnitude and its direction.
Forward direction will be positive while backward direction will be negative
Total displacement = +10 - 20 + 40
Total displacement = +30 m
Answer:
The average kinetic energy of the molecules increases
Explanation:
The temperature of a substance is proportional to the average kinetic energy of the particles in the substance.
In fact, for an ideal gas for instance, there is the following relationship:

where
KE is the average kinetic energy of the particles
k is the Boltzmann's constant
T is the absolute temperature of the gas
When we heat a substance (such as the flask of water in this problem), we are giving thermal energy to the particles of the substance; therefore, these particles will move faster on average, so their kinetic energy will increase (and the temperature of the substance will increase as well).