Answer:
Because the disturbances are in opposite directions for this superposition, the resulting amplitude is zero for pure destructive interference
Explanation:
Answer:
5 mg, 
Explanation:
First of all, let's rewrite the mass in grams using scientific notation.
we have:
m = 0.005 g
To rewrite it in scientific notation, we must count by how many digits we have to move the dot on the right - in this case three. So in scientific notation is

If we want to convert into milligrams, we must remind that
1 g = 1000 mg
So we can use the proportion

and we find

Answer: The air is full of water, as water vapor, even if you can't see it. Condensation is the process of water vapor turning back into liquid water, with the best example being those big, fluffy clouds floating over your head. And when the water droplets in clouds combine, they become heavy enough to form raindrops to rain down onto your head.
Explanation:
Answer: 0.56 m/s
Explanation:
Hi, to answer this question we have to apply the formula of the conservation of momentum.
m1 v1 = m2 v2 (because the system is stationary at the beginning)
Where:
m1 = mass of the astronaut
v1= velocity of the astronaut
m2= mass of the satellite
v2= velocity of the satellite
Replacing with the values given and solving:
86 kg (2.35m/s) = 360 kg v2
202.1 kgm/s=360kg v2
202.1kgm/s /360kg =v2
v2 = 0.56 m/s
Feel free to ask for more if needed or if you did not understand something.
Answer:
10.93m/s with the assumption that the water in the lake is still (the water has a speed of zero)
Explanation:
The velocity of the fish relative to the water when it hits the water surface is equal to the resultant velocity between the fish and the water when it hits it.
The fish drops on the water surface vertically with a vertical velocity v. Nothing was said about the velocity of the water, hence we can safely assume that the velocity if the water in the lake is zero, meaning that it is still. Therefore the relative velocity becomes equal to the velocity v with which the fish strikes the water surface.
We use the first equation of motion for a free-falling body to obtain v as follows;
v = u + gt....................(1)
where g is acceleration due to gravity taken as 9.8m/s/s
It should also be noted that the horizontal and vertical components of the motion are independent of each other, hence we take u = 0 as the fish falls vertically.
To obtain t, we use the second equation of motion as stated;

Given; h = 6.10m.
since u = 0 for the vertical motion; equation (2) can be written as follows;

substituting;

Putting this value of t in equation (1) we obtain the following;
v = 0 + 9.8*1.12
v = 10.93m/s