Answer:
Final velocity, v = 0.28 m/s
Explanation:
Given that,
Mass of the model, 
Speed of the model, 
Mass of another model, 
Initial speed of another model, 
To find,
Final velocity
Solution,
Let V is the final velocity. As both being soft clay, they naturally stick together. It is a case of inelastic collision. Using the conservation of linear momentum to find it as :



V = 0.28 m/s
So, their final velocity is 0.28 m/s. Hence, this is the required solution.
Answer: 2m/s
Explanation:
V avg = Displacement / time
Displacement is 8
Time is 4
V avg = 2
Answer:The formula for kinetic energy is
(1/2) M V^2.
With M in kg and V in m/s, the answer will be in Joules.
K.E = 40joule
Explanation:
Well I figured out at his current pace, he would finish the 1100 remaining meters in 200 seconds. However, he needs to complete it in 180 seconds. I'm not sure how to find out how long he has to accelerate at 0.20 m/s/s to complete it in 180 seconds.
Explanation:
It is given that,
Length of the string, l = 2 m
Mass of the string, 
Hanged mass in the string, 
1. The tension in the string is given by :


T = 1.96 N
2. Velocity of the transverse wave in the string is given by :

m = M/l


v = 28 m/s
Hence, this is the required solution.