1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
defon
3 years ago
6

A ventilating fan is operated by 0.5hp electric motor. How much work in joules can the fan do in 3 hours? (I need the answer asa

p)
Physics
1 answer:
shtirl [24]3 years ago
3 0

Answer:

Power= 0.5hp = 375W

T = 3hrs = 10800s

Power = Work done/ Time

Work = Power * Time = 375 * 10800 = 4050000J

You might be interested in
Explanation A 5000 kg rocket is at rest in deep space. The rocket burns fuel pushing 10kg of exhaust gases rearward at 4000 m/s.
katovenus [111]

Answer:

F = 4000 N

Explanation:

given,

mass of rocket (M)= 5000 Kg

10 Kg gas burns at speed (m)= 4000 m/s

time = 10 s

average force = ?

at the end the rocket is at rest

by conservation of momentum

 M v + m v' = 0

 5000 x v - 10 x 4000 = 0

 5000 v = 40000

    v = 8 m/s

speed of rocket = 8 m/s

now,

we know

change in momentum = F x Δ t

F = \dfrac{m(v_i-v_f)}{\Delta t}

F = \dfrac{5000(8-0)}{10}

      F = 4000 N

Hence, the average force applied to the rocket is equal to F = 4000 N

4 0
3 years ago
Read 2 more answers
Interactive LearningWare 10.1 reviews the concepts involved in this problem. A spring stretches by 0.0161 m when a 3.74-kg objec
yKpoI14uk [10]

Answer:

m = 3.91 kg

Explanation:

Given that,

Mass of the object, m = 3.74 kg

Stretching in the spring, x = 0.0161 m

The frequency of vibration, f = 3.84 Hz

When the object is suspended, the gravitational force is balanced by the spring force as :

mg=kx

k=\dfrac{mg}{x}

k=\dfrac{3.74\times 9.8}{0.0161}

k = 2276.52 N/m

The frequency of vibration is given by :

f=\dfrac{1}{2\pi}\sqrt{\dfrac{k}{m}}

m=\dfrac{k}{4\pi^2f^2}

m=\dfrac{2276.52}{4\pi^2\times (3.84)^2}

m = 3.91 kg

So, the mass of the object is 3.91 kg. Hence, this is the required solution.

8 0
3 years ago
Very far from earth (at R- oo), a spacecraft has run out of fuel and its kinetic energy is zero. If only the gravitational force
Margaret [11]

Answer:

Speed of the spacecraft right before the collision: \displaystyle \sqrt{\frac{2\, G\cdot M_\text{e}}{R\text{e}}}.

Assumption: the earth is exactly spherical with a uniform density.

Explanation:

This question could be solved using the conservation of energy.

The mechanical energy of this spacecraft is the sum of:

  • the kinetic energy of this spacecraft, and
  • the (gravitational) potential energy of this spacecraft.

Let m denote the mass of this spacecraft. At a distance of R from the center of the earth (with mass M_\text{e}), the gravitational potential energy (\mathrm{GPE}) of this spacecraft would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R}.

Initially, R (the denominator of this fraction) is infinitely large. Therefore, the initial value of \mathrm{GPE} will be infinitely close to zero.

On the other hand, the question states that the initial kinetic energy (\rm KE) of this spacecraft is also zero. Therefore, the initial mechanical energy of this spacecraft would be zero.

Right before the collision, the spacecraft would be very close to the surface of the earth. The distance R between the spacecraft and the center of the earth would be approximately equal to R_\text{e}, the radius of the earth.

The \mathrm{GPE} of the spacecraft at that moment would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}.

Subtract this value from zero to find the loss in the \rm GPE of this spacecraft:

\begin{aligned}\text{GPE change} &= \text{Initial GPE} - \text{Final GPE} \\ &= 0 - \left(-\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\right) = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \end{aligned}

Assume that gravitational pull is the only force on the spacecraft. The size of the loss in the \rm GPE of this spacecraft would be equal to the size of the gain in its \rm KE.

Therefore, right before collision, the \rm KE of this spacecraft would be:

\begin{aligned}& \text{Initial KE} + \text{KE change} \\ &= \text{Initial KE} + (-\text{GPE change}) \\ &= 0 + \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \\ &= \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\end{aligned}.

On the other hand, let v denote the speed of this spacecraft. The following equation that relates v\! and m to \rm KE:

\displaystyle \text{KE} = \frac{1}{2}\, m \cdot v^2.

Rearrange this equation to find an equation for v:

\displaystyle v = \sqrt{\frac{2\, \text{KE}}{m}}.

It is already found that right before the collision, \displaystyle \text{KE} = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}. Make use of this equation to find v at that moment:

\begin{aligned}v &= \sqrt{\frac{2\, \text{KE}}{m}} \\ &= \sqrt{\frac{2\, G\cdot M_\text{e} \cdot m}{R_\text{e}\cdot m}} = \sqrt{\frac{2\, G\cdot M_\text{e}}{R_\text{e}}}\end{aligned}.

6 0
2 years ago
The uncertainty in the position of an electron along an x axis is given as 5 x 10-12 m. What is the least uncertainty in any sim
Vsevolod [243]

Answer:

The least uncertainty in the momentum component px is 1 × 10⁻²³ kg.m.s⁻¹.

Explanation:

According to Heisenberg's uncertainty principle, the uncertainty in the position of an electron (σx) and the uncertainty in its linear momentum (σpx) are complementary variables and are related through the following expression.

σx . σpx ≥ h/4π

where,

h is the Planck´s constant

If σx = 5 × 10⁻¹²m,

5 × 10⁻¹²m . σpx ≥ 6.63 × 10⁻³⁴ kg.m².s⁻¹/4π

σpx ≥ 1 × 10⁻²³ kg.m.s⁻¹

4 0
3 years ago
Use Eq. cosϕ=R/Z to show that the average power delivered by the source in an L−R−C series circuit is given by Pav = I^2rmsR .
Evgen [1.6K]

Answer:

Explanation:

In a L C R circuit, the average power is given by

P_{av}=V_{rms}I_{rms}Cos\phi

As given in the question

CosФ = R / Z

And we know that

V_{rms}=I_{rms}\times Z

So

P_{av}=I_{rms}\times Z\times I_{rms}\times \frac{R}{Z}

P_{av}=I_{rms}^{2}\times R

6 0
3 years ago
Other questions:
  • When you set something down on the ground what kind of work is your arm doing
    10·2 answers
  • Two infinite wires 20 cm apart each carry a current of 3 A into the paper. d I I d/2 d/2 At a distance d 2 below their midpoint,
    14·1 answer
  • One wire has a cross-sectional area of 1,250 cmil and a resistance of 7 ohms. A second piece of wire, identical except for cross
    7·1 answer
  • Dissolved in many gasolines are cleaning agents and anti-knock additives. These cleaning agents and additives are an example of
    12·1 answer
  • What is the heart rate recorded a few minutes after completing a workout?
    6·2 answers
  • In science, the inquiry process involves observing, questioning, ________, and summarizing.​
    12·2 answers
  • How does an object's acceleration change if the net
    15·1 answer
  • How will you modify the station so that coin travels with the index card​
    13·1 answer
  • Hey guys. What is physically?<br><br> Help me to find a moderator!!!! Please.
    10·2 answers
  • F. If heat could flow to the container, how would the final temperature be affected?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!