Answer:
I mean this is what I think
Explanation:
you would need to place a rock on top of each other until you reach the ceiling
It seems logical to me
Answer:
19.5°
Explanation:
The energy of the mass must be conserved. The energy is given by:
1) 
where m is the mass, v is the velocity and h is the hight of the mass.
Let the height at the lowest point of the be h=0, the energy of the mass will be:
2) 
The energy when the mass comes to a stop will be:
3) 
Setting equations 2 and 3 equal and solving for height h will give:
4) 
The angle ∅ of the string with the vertical with the mass at the highest point will be given by:
5) 
where l is the lenght of the string.
Combining equations 4 and 5 and solving for ∅:
6) 
Explanation:
Solution:
Let the time be
t1=35min = 0.58min
t2=10min=0.166min
t3=45min= 0.75min
t4=35min= 0.58min
let the velocities be
v1=100km/h
v2=55km/h
v3=35km/h
a. Determine the average speed for the trip. km/h
first we have to solve for the distance
S=s1+s2+s3
S= v1t1+v2t2+v3t3
S= 100*0.58+55*0.166+35*0.75
S=58+9.13+26.25
S=93.38km
V=S/t1+t2+t3+t4
V=93.38/0.58+0.166+0.75+0.58
V=93.38/2.076
V=44.98km/h
b. the distance is 93.38km
I think that it is apparent magnitude