Answer:
Simplified = 5
Classification = Monomial
Step-by-step explanation:
<h2>PART I: Simplify the expression</h2>
<u>Given expression:</u>
3x² + 6x + 5 - 3x (2 + x)
<u>Expand parenthesis by distributive property:</u>
= 3x² + 6x + 5 - 3x (2) - 3x (x)
= 3x² +6x + 5 - 6x - 3x²
<u>Put like terms together:</u>
= 3x² - 3x² + 6x - 6x + 5
= 0 + 0 + 5
= 
<h2>PART II: Classify polynomial</h2>
<u>Concept:</u>
Polynomial is classified by the number of terms a polynomial has.
- Monomial: a polynomial with only one term
- Binomial: a polynomial with two terms
- ...
<u>Classify the given expression:</u>
Original = 3x² + 6x + 5 - 3x (2 + x)
Simplified = 5
5 is a constant and it has only one term
Therefore, it is a <u>monomial</u>.
Hope this helps!! :)
Please let me know if you have any questions
What is the mean, median, mode, and range of this data set, 2,3,2,4,3,3,3,4,2,3,4,2,4,4,9,3,4,4
slava [35]
Answer:
Mean: 3.5
Median: 3
Mode: 4
Range: 7
Step-by-step explanation:
Answer:
Kindly check explanation
Step-by-step explanation:
Given :
Sample size, n = 30
Tcritical value = 2.045
Null hypothesis :
H0: μ = 9.08
Alternative hypothesis :
H1: μ≠ 9.08
Sample mean, m = 8.25
Samole standard deviation, s = 1.67
Test statistic : (m - μ) ÷ s/sqrt(n)
Test statistic : (8.25 - 9.08) ÷ 1.67/sqrt(30)
Test statistic : - 0.83 ÷ 0.3048988
Test statistic : - 2.722
Tstatistic = - 2.722
Decision region :
Reject Null ; if
Tstatistic < Tcritical
Tcritical : - 2.045
-2.722 < - 2.045 ; We reject the Null
Using the α - level (confidence interval) 0.05
The Pvalue for the data from Tstatistic calculator:
df = n - 1 =. 30 - 1 = 29
Pvalue = 0.0108
Reject H0 if :
Pvalue < α
0.0108 < 0.05 ; Hence, we reject the Null
The first box would be 2 and the second box would be 11.
49-65=2(3-11)
-16=2(-8)
-16= -16
Answer: $29, 290.5
Step-by-step explanation:
1.15($25,470)=