Answer: first option, the work output of the hairdryer will be less than the work input.
Explanation:
1) The work output measured in watts is the power of hair dryer measured in joules per second.
2) The hair dryer converts electrical energy from the wall outlet to mechanical and thermal energy: hot wind.
3) Nevertheless, you can never expect a 100% efficiency of the machines: due to friction, some energy is converted into useless energy.
So, efiiviency = power output / power input< 1 ⇒
power output = work output / time
input power = work input / time
⇒ work output / work input < 1
⇒ work output < work input.
Which is the first option: the work output of the hairdryer will be less than the work input
Answer:
their are a it is in the chemicle
Explanation:18 carbon and 4 hydrogen
so it is a toatle of 22 atoms
Answer:
Water's unique density, high specific heat, cohesion, adhesion, and solvent abilities allow it to support life.
Explanation:
Answer:
The reaction mentioned in the question is a decomposition reaction.
Explanation:
Decomposition reaction is a specific type of chemical reaction in which the reactant molecule undergo break down to generate its respective products.
NaCl ⇒ Na + Cl2
In the above reaction sodium chloride(NaCl) undergo decomposition or break down to generate Sodium(Na) and chlorine gas(Cl2).
Answer:
Explanation:
It is easier if you convert the kelvin temperature into Celsius degrees:
- ºC = T - 273.15 = 150 - 273.15 = -123.15ºC
Now, you know that that is a very cold temperature. Thus, may be the oxygen is not gas any more but it changed to liquid . . . or solid?
You must search for the boiling point and melting (freezing) point of oxygen in tables or the internet. At standard pressure (about 1 atm) they are:
- Melting point: −218.79 °C,
- Boiling point: −182.962 °C
That means that:
- below -218.79ºC oxygen is solid (not our case).
- between -218.79ºC and -182.962ºC oxygen is liquid (not our case)
- over -182.962ºC oxygen is a gas. This is our case, because -123.15ºC is a higher temperature than -182.962ºC.
Hence, <em>the state of matter of oxygen at 150K</em>, and standard pressure, is gas.