From the ideal gas equation,

where n is number of moles, R is Universal gas constant, P is pressure, V is volume, and T is temperature of the gas.
The pressure and volume are inversely proportional to each other at constant temperature and number of moles.
Hence, on decreasing the pressure, the volume will increase.
As the hiker reaches a height of a mountain, the pressure would decrease which results in the reestablishment of equilibrium between gas molecules thus resulting in pushing of bag outwards.
Hence, the bag will expand as the hiker reaches the top of the mountain.
The car's velocity after 5s : 10 m/s
<h3>Further explanation</h3>
Given
velocity=v=72 km/h=20 m/s
time=t = 5 s
acceleration=a = -2 m/s²
Required
velocity after 5s
Solution
Straight motion changes with constant acceleration

vf=final velocity
vi = initial velocity
Input the value :

The car is decelerating (acceleration is negative) so that its speed decreases
Answer:
The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object
Explanation:
Answer:
5.35m H2O2 x 34.02g/1m H2O2 = 182g H2O2
Explanation: