Answer:
The given blank can be filled with location of gene expression.
Explanation:
A regulatory sequence refers to a section of a molecule of nucleic acid that possesses the tendency of declining or upsurging the expression of particular genes within an organism. The regulation of gene expression is an important characteristic of all living species and viruses.
In the given case, it is essential to use the regulatory sequence of a milk gene when developing a recombinant gene as a regulatory sequence monitors the location of gene expression.
What organ integrates the brain nervous organs with the endocrine system? Hypothalamus
Volcanoes on mars kinda look like craters on earth. They look like mounds, its hard to explain.
-TheOneandOnly003
On the cellular level, the reactions for photosynthesis occur in organelles called chloroplasts (in eukaryotic cells). Blue-green algae (which are prokaryotic) carry-out the photosythesis reactions in the cytoplasm.
So all of the above
Answer:
What does cellular respiration due?
<h2>Cellular respiration releases stored energy in glucose molecules and converts it into a form of energy that can be used by cells.</h2>
Explanation:
<h2>What are the 7 steps of cellular respiration in order?</h2>
<h2>Overview of the steps of cellular respiration. Glycolysis. Six-carbon glucose is converted into two pyruvates (three carbons each). ATP and NADH are made.</h2>
...
<h2>Glycolysis. ... </h2><h2>Pyruvate oxidation. ... </h2><h2>Citric acid cycle. ... </h2><h2>Oxidative phosphorylation</h2>
<h2>Answer</h2>
<h2> Cellular respiration is a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from oxygen molecules[1] or nutrients into adenosine triphosphate (ATP), and then release waste products.[2] The reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy because weak high-energy bonds, in particular in molecular oxygen,[3] are replaced by stronger bonds in the products. Respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. The overall reaction occurs in a series of biochemical steps, some of which are redox reactions. Although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a living cell because of the slow, controlled release of energy from the series of reactions.Nutrients that are commonly used by animal and plant cells in respiration include sugar, amino acids and fatty acids, and the most common oxidizing agent providing most of the chemical energy is molecular oxygen (O2).[1] The chemical energy stored in ATP (the bond of its third phosphate group to the rest of the molecule can be broken allowing more stable products to form, thereby releasing energy for use by the cell) can then be used to drive processes requiring energy, including biosynthesis, locomotion or transport of molecules across cell membranes.</h2>