Answer: 4nmeter
Explanation: The two observer a and b will measure the same wavelength since the speed of the space craft is very small compared with the speed of light c. That is
V which is the speed of space craft 15000km/s = 15000000m/s
Comparing this with the speed of light c 3*EXP(8)m/s we have
15000000/300000000
= 0.05=0.1
Therefore the speed of the space craft V in terms of the speed of light c is 0.1c special relativity does not apply to object moving at such speed. So the wavelength would not be contracted it will remain same for both observers.
I’ve answered this before so I know the question is missing an
important given and that given is: <span>1 has an
empty trailer and the other has a fully loaded one.
So, it would be the fully loaded trailer that would take a longer distance to
stop because a lot of weight is being pulled, and when the brakes are started,
the fully loaded trailer is more like pushing against the truck.</span>
Answer:
a) 3.43 m/s
Explanation:
Due to the law of conservation of momentum, the total momentum of the bullet - rifle system must be conserved.
The total momentum before the bullet is shot is zero, because they are both at rest, so:

Instead the total momentum of the system after the shot is:

where:
m = 0.006 kg is the mass of the bullet
M = 1.4 kg is the mass of the rifle
v = 800 m/s is the velocity of the bullet
V is the recoil velocity of the rifle
The total momentum is conserved, therefore we can write:

Which means:

Solving for V, we can find the recoil velocity of the rifle:

where the negative sign indicates that the velocity is opposite to direction of the bullet: so the recoil speed is
a) 3.43 m/s
Answer:
There will be a force of gravity and a normal force coming from the track itself.
Explanation:
Answer:571.09 kJ
Explanation:
Given
Temperature of cooling water from engine exit
After Passing through the radiator its temperature decreases to 
specific heat of water
Volume of water 
density of water 
Thus mass of water
Heat transferred to the surrounding is equal to heat absorbed by cooling water



