Answer:
Left
Explanation:
The force is applied opposite of the acceleration.
Answer:
An object's acceleration is the rate its velocity (speed and direction) changes. Therefore, an object can accelerate even if its speed is constant - if its direction changes.
Explanation:
Answer: 4575N
Explanation:
For y component, W = mgcosø
W = 500×9.8cos21
W = 4574.54N
Find the diagram in the attached file
Answer:
d) The speed of the astronaut
Explanation:
The sentence describes the speed of the astronaut. This speed value is 10meters per minute.
Now let us understand why;
- Speed is the distance divided by time. It is a scalar quantity without regard for direction but it has magnitude.
- The value 10meters per minute clearly shows this instance. We do not know the direction the astronaut is moving towards.
- Velocity, like speed is the displacement of a body with time. It is a vector quantity and it shows the direction of motion.
- For example, 10m/s due west is a velocity value because we know the direction.
Therefore, since there is no directional sense, the value indicates speed.
The mass of the hoop is the only force which is computed by:F net = 2.8kg*9.81m/s^2 = 27.468 N
the slow masses that must be quicker are the pulley, ring, and the rolling sphere.
The mass correspondent of M the pulley is computed by torque τ = F*R = I*α = I*a/R F = M*a = I*a/R^2 --> M = I/R^2 = 21/2*m*R^2/R^2 = 1/2*m
The mass equal of the rolling sphere is computed by: the sphere revolves around the contact point with the table. So using the proposition of parallel axes, the moment of inertia of the sphere is I = 2/5*mR^2 for spin about the midpoint of mass + mR^2 for the distance of the axis of rotation from the center of mass of the sphere. I = 7/5*mR^2 M = 7/5*m
the acceleration is then a = F/m = 27.468/(2.8 + 1/2*2 + 7/5*4) = 27.468/9.4 = 2.922 m/s^2