Answer:
a) 4.31 m/s²
b) 215.5 m
Explanation:
a) According to Newton's first law of motion
The net force applied to particular mass produced acceleration, a, according to
F = ma
F = 140 N
m = 32.5 kg
a = ?
140 = 32.5 × a
a = 140/32.5 = 4.31 m/s²
b) Using the equations of motion, we can obtain the distance travelled by the object in t = 10 s
u = initial velocity of the probe = 0 m/s (since it was initially at rest)
a = 4.31 m/s²
t = 10 s
s = distance travelled = ?
s = ut + at²/2
s = 0 + (4.31×10²)/2 = 215.5 m
Answer:
a

b

c

Explanation:
From the question we are told that
The frequency is 
The length of the vibrating string is 
The mass is 
Generally the wavelength is mathematically represented as

=> 
=> 
Generally the wave speed is

=> 
=> 
Generally the tension on the wire is mathematically represented as

=> 
=> 
Well you need to have lots of heat
<h2>
Answer:</h2><h2>
It is due to a refractment of light.</h2>
Sound moves faster in warmer air than colder air the way bends away from the warm air and back towards of air.
The final temperature of the tea cup is 100°C.
<h3>What is internal energy?</h3>
The Internal energy is the energy of a substance due to to the constant random motion of its particles.
The symbol for internal energy of a substance is U and it is measured in Joules.
ΔU = q + W
- W is the mechanical work.
In conclusion, the final temperature of the tea cup at room temperature of 24 °C which is heated until it has twice the internal energy is 100°C.
Learn more about internal energy at: brainly.com/question/24028630
#SPJ1