When driver see the child standing on road his speed is 20 m/s
So here at that instant his reaction time is 0.80 s
He will cover a total distance given by product of speed and time



now after this he will apply brakes with acceleration a = 7 m/s^2
so the distance covered before it stop is given by



so the total distance covered by it


<em>so it will cover a total distance of 44.6 m</em>
Answer:
All the competitors will move with the same velocity.
Explanation:
Here, the situations for each competitor are identical. Thus, they will exert the same force and hence, their velocities at each instants will be identical.
Answer:

Explanation:
From the question we are told that:
Frictional force 
Coefficient of kinetic friction 
Generally the equation for Normal for is mathematically given by

Therefore


Work= Force x Distance
Answer: 7500 Joules
The y-component of the stone's velocity when it is 8 m below the hand is 14.86 m / s
v² = u² + 2 a s
s = Displacement
u = Initial velocity
a = Acceleration
u = 8 m / s
s = 8 m
v² = 8² + 2 * 9.8 * 8
v² = 64 + 156.8
v = √ 220.8
v = 14.86 m / s
The equation used to solve the problem is an equation of motion. These equations are designed to locate an object in motion using components such as velocity, displacement, acceleration and time.
Therefore, the y-component of the stone's velocity is 14.86 m / s
To know more about Equations of motion
brainly.com/question/5955789
#SPJ1