I believe the correct answer is D
One that can help you is:
ΔT=<span>T<span>Final</span></span>−<span>T<span>Initia<span>l
That is of course adding both tmepratures. There is one more that is a lil bit more complex
</span></span></span><span><span>Tf</span>=<span>Ti</span>−Δ<span>H<span>rxn</span></span>∗<span>n<span>rxn</span></span>/(<span>C<span>p,water</span></span>∗<span>m<span>water</span></span>)
This one is taking into account that yu can find temperature and that there could be a change with a chemical reaction. Hope this helps</span>
Answer:
A. The path of least resistance.
Explanation:
ur welcome again ;)
If you do not have to use relative physics but classic physics, this is how you solve it:
Speed of light = c = 3 * 10^5 km/s
Speed of your foe respect to you: 0.259c
Speed of the torpedo respect to you: 0.349c
Speed of the torpedo respect your foe: 0.349c - 0.259c = 0.09c
Conversion to km/s = 0.09 * 3.0 * 10^5 km/s = 27000 km/s
Note that this solution, using classic physics do not take into account time and space dilation.
Answer: 27000 km/s