Answer:
Gamma radiation or Cathode rays
Explanation:
by striking incident gamma or cathode rays onto the solid when placed on a photographic plate
Answer:
W = ½ m v²
Explanation:
In this exercise we must solve it in parts, in a first part we use the conservation of the moment to find the speed after the separation
We define the system formed by the two parts of the rocket, therefore the forces during internal separation and the moment are conserved
initial instant. before separation
p₀ = m v
final attempt. after separation
= m /2 0 + m /2 v_{f}
p₀ = p_{f}
m v = m /2 
v_{f}= 2 v
this is the speed of the second part of the ship
now we can use the relation of work and energy, which establishes that the work is initial to the variation of the kinetic energy of the body
initial energy
K₀ = ½ m v²
final energy
= ½ m/2 0 + ½ m/2 v_{f}²
K_{f} = ¼ m (2v)²
K_{f} = m v²
the expression for work is
W = ΔK = K_{f} - K₀
W = m v² - ½ m v²
W = ½ m v²
Answer:
m=417.24 kg
Explanation:
Given Data
Initial mass of rocket M = 3600 Kg
Initial velocity of rocket vi = 2900 m/s
velocity of gas vg = 4300 m/s
Θ = 11° angle in degrees
To find
m = mass of gas
Solution
Let m = mass of gas
first to find Initial speed with angle given
So
Vi=vi×tanΘ...............tan angle
Vi= 2900m/s × tan (11°)
Vi=563.7 m/s
Now to find mass
m = (M ×vi ×tanΘ)/( vg + vi tanΘ)
put the values as we have already solve vi ×tanΘ
m = (3600 kg ×563.7m/s)/(4300 m/s + 563.7 m/s)
m=417.24 kg
The centripetal force experienced by the towel is 55 N.
The given parameters;
- angular speed of the washing machine, ω = 200 rpm
- radius of the machine' drum, r = 0.5 m
- mass of the towel, m = 0.25 kg
The centripetal force experienced by the towel spinning along the walls of the drum is calculated as follows;
Fc = mrω²
where;
<em>Fc is the centripetal force</em>
<em>ω is angular speed in rad/s</em>
The angular speed in rad/s is calculate as;

The centripetal force experienced by the towel is calculated as;

Thus, the centripetal force experienced by the towel is 55 N.
Learn more here: brainly.com/question/20905151
Answer:
7.04 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity = 0
s = Displacement on Earth = 1.2 m
a = Acceleration due to gravity on Moon = 1.67 m/s²
a = Acceleration due to gravity Earth= 9.81 m/s²
Accelration going up is considered as negetive
Initial Velocity of the ball

Assuming that the ball is thrown with the same velocity on the Moon, displacement of the ball is

The displacement of the ball on the moon is 7.04 m