Answer:
the position of the wood below the interface of the two liquids is 2.39 cm.
Explanation:
Given;
density of oil,
= 926 kg/m³
density of the wood,
= 974 kg/m³
density of water,
= 1000 kg/m³
height of the wood, h = 3.69 cm
Based on the density of the wood, it will position across the two liquids.
let the position of the wood below the interface of the two liquids = x
Let the wood be in equilibrium position;
![F_{wood} - F_{oil} - F_{water} = 0\\\\\rho _{wood} .gh - \rho _o .g(h-x) - \rho_w .gx = 0\\\\\rho _{wood} .h - \rho _o (h-x) - \rho_w .x = 0\\\\\rho _{wood} .h -\rho _o h + \rho _o x - \rho_w .x =0\\\\h (\rho _{wood} -\rho _o ) = x( \rho_w - \rho _o)\\\\x =h[\frac{ \rho _{wood} -\rho _o }{\rho_w - \rho _o} ]\\\\x = 3.69\ cm \times [\frac{974 - 926}{1000-926} ]\\\\x = 2.39 \ cm](https://tex.z-dn.net/?f=F_%7Bwood%7D%20-%20F_%7Boil%7D%20-%20F_%7Bwater%7D%20%3D%200%5C%5C%5C%5C%5Crho%20_%7Bwood%7D%20.gh%20-%20%5Crho%20_o%20.g%28h-x%29%20-%20%5Crho_w%20.gx%20%3D%200%5C%5C%5C%5C%5Crho%20_%7Bwood%7D%20.h%20-%20%5Crho%20_o%20%28h-x%29%20-%20%5Crho_w%20.x%20%3D%200%5C%5C%5C%5C%5Crho%20_%7Bwood%7D%20.h%20-%5Crho%20_o%20h%20%2B%20%5Crho%20_o%20x%20-%20%5Crho_w%20.x%20%3D0%5C%5C%5C%5Ch%20%28%5Crho%20_%7Bwood%7D%20%20-%5Crho%20_o%20%29%20%3D%20x%28%20%5Crho_w%20-%20%5Crho%20_o%29%5C%5C%5C%5Cx%20%3Dh%5B%5Cfrac%7B%20%5Crho%20_%7Bwood%7D%20%20-%5Crho%20_o%20%7D%7B%5Crho_w%20-%20%5Crho%20_o%7D%20%5D%5C%5C%5C%5Cx%20%3D%203.69%5C%20cm%20%5Ctimes%20%5B%5Cfrac%7B974%20-%20926%7D%7B1000-926%7D%20%5D%5C%5C%5C%5Cx%20%3D%202.39%20%5C%20cm)
Therefore, the position of the wood below the interface of the two liquids is 2.39 cm.
The absolute refractive index is equal to the speed of light of the wave in air divided by the speed of light in the second medium. This means that it is equal to 3 x10^8 / 1.71 x10^8. This means the answer is 1.75
<h2>Answer: about the same size of the gap or slit</h2>
Diffraction happens when a wave (mechanical or electromagnetic wave, in fact, any wave) meets an obstacle or a slit .When this occurs, the wave bends around the corners of the obstacle or passes through the opening of the slit that acts as an obstacle, forming multiple patterns with the shape of the aperture of the slit.
Note that the principal condition for the occurrence of this phenomena is that the obstacle must be comparable in size (similar size) to the size of the wavelength.
In other words, when the gap (or slit) size is larger than the wavelength, the wave passes through the gap and does not spread out much on the other side, but when the gap size is equal to the wavelength, maximum diffraction occurs.
Therefore:
<h2>Waves diffract the most when their wavelength is <u>about the same size of the gap
</u></h2>
<u />