Answer:

Step-by-step explanation:
Given
and 
Required
The relationship between them
and 
From the question, we understand that
and
are supplementary
Supplementary angles add up to 180.
So, the relationship between
and
is:

Answer: 23 degrees
---------------------------------------
---------------------------------------
Explanation:
Using the inscribed angle theorem we can connect the central angle ABC and the inscribed angle ADC. The reason why is because they both cut off the minor arc AC
Angle ABC is given to be 46 degrees, the formula we use is shown below
central angle = 2*(inscribed angle)
angle ABC = 2*(angle ADC)
46 = 2*(angle ADC)
46/2 = 2*(angle ADC)/2 ... divide both sides by 2
23 = angle ADC
angle ADC = 23 degrees
To solve for f, you need to isolate/get the variable by itself in the equation:
4(0.5f - 0.25) = 6 + f Distribute 4 into (0.5f - 0.25)
(4)0.5f + (4)(-0.25) = 6 + f
2f - 1 = 6 + f Subtract f on both sides to get "f" on one side of the equation
2f - f - 1 = 6 + f - f
f - 1 = 6 Add 1 on both sides to get "f" by itself
f - 1 + 1 = 6 + 1
f = 7
PROOF
4(0.5f - 0.25) = 6 + f Substitute/plug in 7 into "f" since f = 7
4(0.5(7) - 0.25) = 6 + 7
4(3.5 - 0.25) = 13
4(3.25) = 13
13 = 13
Hello,
I note (a,b,c) the result of a quarters, b dimes and c pennies:
2 solutions:
106=( 3, 3, 1)=( 1, 8, 1)
106=( 0, 0, 106) but : 100= 0*25+ 0*10+ 100
106=( 0, 1, 96) but : 100= 0*25+ 1*10+ 90
106=( 0, 2, 86) but : 100= 0*25+ 2*10+ 80
106=( 0, 3, 76) but : 100= 0*25+ 3*10+ 70
106=( 0, 4, 66) but : 100= 0*25+ 4*10+ 60
106=( 0, 5, 56) but : 100= 0*25+ 5*10+ 50
106=( 0, 6, 46) but : 100= 0*25+ 6*10+ 40
106=( 0, 7, 36) but : 100= 0*25+ 7*10+ 30
106=( 0, 8, 26) but : 100= 0*25+ 8*10+ 20
106=( 0, 9, 16) but : 100= 0*25+ 9*10+ 10
106=( 0, 10, 6) but : 100= 0*25+ 10*10+ 0
106=( 1, 0, 81) but : 100= 1*25+ 0*10+ 75
106=( 1, 1, 71) but : 100= 1*25+ 1*10+ 65
106=( 1, 2, 61) but : 100= 1*25+ 2*10+ 55
106=( 1, 3, 51) but : 100= 1*25+ 3*10+ 45
106=( 1, 4, 41) but : 100= 1*25+ 4*10+ 35
106=( 1, 5, 31) but : 100= 1*25+ 5*10+ 25
106=( 1, 6, 21) but : 100= 1*25+ 6*10+ 15
106=( 1, 7, 11) but : 100= 1*25+ 7*10+ 5
106=( 1, 8, 1) is good
106=( 2, 0, 56) but : 100= 2*25+ 0*10+ 50
106=( 2, 1, 46) but : 100= 2*25+ 1*10+ 40
106=( 2, 2, 36) but : 100= 2*25+ 2*10+ 30
106=( 2, 3, 26) but : 100= 2*25+ 3*10+ 20
106=( 2, 4, 16) but : 100= 2*25+ 4*10+ 10
106=( 2, 5, 6) but : 100= 2*25+ 5*10+ 0
106=( 3, 0, 31) but : 100= 3*25+ 0*10+ 25
106=( 3, 1, 21) but : 100= 3*25+ 1*10+ 15
106=( 3, 2, 11) but : 100= 3*25+ 2*10+ 5
106=( 3, 3, 1) is good
106=( 4, 0, 6) but : 100= 4*25+ 0*10+ 0