Answer:
These parts of the force are called the components of the force. The component that pushes right or left is called the x-component, and the part that pushes up or down is called the y-component. Mathematically, the components act like shadows of the force vector on the coordinate axes.
The mirror formula for curved mirrors is:

where
f is the focal length of the mirror

is the distance of the object from the mirror

is the distance of the image from the mirror
The sign convention that should be used in order to find the correct values is the following:
-

: positive if the mirror is concave, negative if the mirror is convex
-

: positive if the image is real (located on the same side of the object), negative if it is virtual (located on the opposite side of the mirror)
The density is 81.4 g/m3. Before you start plugging numbers into the density formula (D=M/V), you should convert 104 kg to grams, which ends up being 104,000 grams. Then you can plug in the 104,000 grams and 1,278 m3 into the formula. When you divide the mass by the volume, you get a really long decimal, which you can round to 81.4 g/m3, or whatever place your teacher wants you to round to.
Answer:
40 J
Explanation:
From the question given above, the following data were obtained:
Force (F) = 10 N
Distance (s) = 4 m
Workdone (Wd) =?
Work done is simply defined as the product of force and distance moved in the direction of the force. Mathematically, we can express the Workdone as:
Workdone = force × distance
Wd = F × s
With the above formula, we can obtain the workdone as follow:
Force (F) = 10 N
Distance (s) = 4 m
Workdone (Wd) =?
Wd = F × s
Wd = 10 × 4
Wd = 40 J
Thus, 40 J of work was done.