<h3>
Answer:</h3>
1031.4 Calories.
<h3>
Explanation:</h3>
We are given;
Mass of the copper metal = 50.0 g
Initial temperature = 21.0 °C
Final temperature, = 75°C
Change in temperature = 54°C
Specific heat capacity of copper = 0.382 Cal/g°C
We are required to calculate the amount of heat in calories required to raise the temperature of the copper metal;
Quantity of heat is given by the formula,
Q = Mass × specific heat capacity × change in temperature
= 50.0 g × 0.382 Cal/g°C × 54 °C
= 1031.4 Calories
Thus, the amount of heat energy required is 1031.4 Calories.
An element or compound which occurs naturally in the earth is a mineral
Answer:
Its when like two pure substances are like combined into one.
Explanation:
Answer: C2H4
Explanation:
The percentage composition of ethanol ( C2H5OH ) consist of 52.2% Carbon, Hydrogen of 13.0 and 34.8% of Oxygen.
The percentage composition of ethane gas (C2H6) consist of 80.0% carbon and 20.0% hydrogen.
The composition of Ethylene Glycols i.e C2H4(OH)2 is Carbon of 39.7%, 9.7% hydrogen and 51.6% oxygen.
The percent composition of c2h4 is 86% carbon, and 14% hydrogen.
From the information given, the substance with the highest percentage of carbon is C2H4
The answer is intermediate, so E.