<em>Note: Your question seems a little bit ambiguous. So, I am assuming the given function f(x)=9x+7.</em>
<em>Thus, I am solving based on it. It would still clear your concept. </em>
Answer:
The inverse of f(x)=9x+7
Step-by-step explanation:
Given the function

A function g is the inverse of function f if for y=f(x), x=g(y)
Replace x with y

solve for y


Therefore,
The inverse of f(x)=9x+7 is:
i.e.

Answer:
1
Step-by-step explanation:
Solve. Remember to follow PEMDAS.
PEMDAS is the order of operation, and =
Parenthesis
Exponent (& Roots)
Multiplication
Division
Addition
Subtraction
First, divide 54 with -6:
54/(-6) = -9
Next, combine the terms.
10 + (-9) = 10 - 9 = 1
1 is your answer.
~
Order them from smallest to largest:
21, 24, 25, 26, 26, 31
mean: 25.5
add all the numbers up and divide them by 6.
median: 25.5
the number in between 25 & 26.
mode: 26
there are two 26’s in the pattern.
range: 21-31
(p + q)⁵
(p + q)(p + q)(p + q)(p + q)(p + q)
{[p(p + q) + q(p + q)][p(p + q) + q(p + q)](p + q)}
{[p(p) + p(q) + q(p) + q(q)][p(p) + p(q) + q(p) + q(q)](p + q)}
(p² + pq + pq + q²)(p² + pq + pq + q²)(p + q)
(p² + 2pq + q²)(p² + 2pq + q²)(p + q)
{[p²(p² + 2pq + q²) + 2pq(p² + 2pq + q²) + q²(p² + 2pq + q²)](p + q)}
{[p²(p²) + p²(2pq) + p²(q²) + 2pq(p²) + 2pq(2pq) + 2pq(q²) + q²(p²) + q²(2pq) + q²(q²)](p + q)}
(p⁴ + 2p³q + p²q² + 2p³q + 4p²q² + 2pq³ + p²q² + 2pq³ + q⁴)(p + q)
(p⁴ + 2p³q + 2p³q + p²q² + 4p²q² + p²q² + 2pq³ + 2pq³ + q⁴)(p + q)
(p⁴ + 4p³q + 6p²q² + 4pq³ + q⁴)(p + q)
p⁴(p + q) + 4p³q(p + q) + 6p²q²(p + q) + 4pq³(p + q) + q⁴(p + q)
p⁴(p)+ p⁴(q) + 4p³q(p) + 4p³q(q) + 6p²q²(p) + 6p²q²(q) + 4pq³(p) + 4pq³(q) + q⁴(p) + q⁴(q)
p⁵ + p⁴q + 4p⁴q + 4p³q² + 6p³q² + 6p²q³ + 4p²q³ + 4pq⁴ + pq⁴ + q⁵
p⁵ + 5p⁴q + 10p³q² + 10p²q³ + 5pq⁴ + q⁵