Answer:
Each side of the L-shaped sidewalk is 126 m and 32m respectively.
Step-by-step explanation:
Given:
Total length of the sidewalk = 158 meters
Cutting across the lawn the distance = 130 meters
The L-shaped lawn will be treated as a right angled triangle.
So the 130 m distance is the hypotenuse here.
Let one side of the L-shaped lawn be 'x' meter so the another side will be (158-x) meters.
Applying Pythagoras formula.
![(Hypotenuse)^2=(height)^2+(base)^2](https://tex.z-dn.net/?f=%28Hypotenuse%29%5E2%3D%28height%29%5E2%2B%28base%29%5E2)
So,
⇒ ![(130)^2=x^2 +(158-x)^2](https://tex.z-dn.net/?f=%28130%29%5E2%3Dx%5E2%20%2B%28158-x%29%5E2)
⇒ ![(130)^2=x^2+(158-x)(158-x)](https://tex.z-dn.net/?f=%28130%29%5E2%3Dx%5E2%2B%28158-x%29%28158-x%29)
⇒ ![16900=x^2+24964-158x-158x+x^2](https://tex.z-dn.net/?f=16900%3Dx%5E2%2B24964-158x-158x%2Bx%5E2)
⇒ ![16900 =2x^2-316x+24964](https://tex.z-dn.net/?f=16900%20%3D2x%5E2-316x%2B24964)
⇒ ![2x^2+316x+24964-16900=0](https://tex.z-dn.net/?f=2x%5E2%2B316x%2B24964-16900%3D0)
⇒ ![2x^2-316x+8064=0](https://tex.z-dn.net/?f=2x%5E2-316x%2B8064%3D0)
⇒
Applying quadratic formula;
Quadratic formula :
where a=1 and b=-158 and c=4032
So the value of x= 126 and 32.
The length of each side of the sidewalk is 'x'= 126 m and '(158-x)'='(158-126)'=32 m