Answer:
m<9
Step-by-step explanation:
m/3 - 4 < -1
+4 +4
______________
m/3<3
× 3 ×3
__________
m<9
Hope this Helps!
Answer:
9x^4+5x^2-2x-13
Step-by-step explanation:
Hello :
<span>the equation all lines passes through (-5, -1) is :
y - (-1) = m(x -(-5)) m the slope
if this line parallal </span><span>to the line y=4x-6 so : m= 4 (same slope )
</span><span>the equation of the line that passes through (-5, -1) and is parallel to the line y=4x-6: is :
</span> y+1 =4(x+5)
y = 4x +19
Using the dot product:
For any vector x, we have
||x|| = √(x • x)
This means that
||w|| = √(w • w)
… = √((u + z) • (u + z))
… = √((u • u) + (u • z) + (z • u) + (z • z))
… = √(||u||² + 2 (u • z) + ||z||²)
We have
u = ⟨2, 12⟩ ⇒ ||u|| = √(2² + 12²) = 2√37
z = ⟨-7, 5⟩ ⇒ ||z|| = √((-7)² + 5²) = √74
u • z = ⟨2, 12⟩ • ⟨-7, 5⟩ = -14 + 60 = 46
and so
||w|| = √((2√37)² + 2•46 + (√74)²)
… = √(4•37 + 2•46 + 74)
… = √314 ≈ 17.720
Alternatively, without mentioning the dot product,
w = u + z = ⟨2, 12⟩ + ⟨-7, 5⟩ = ⟨-5, 17⟩
and so
||w|| = √((-5)² + 17²) = √314 ≈ 17.720
Answer:
Choice D: Perimeter = 5 +
+
units
Step-by-step explanation:
point B(9, 2) , point C(4, 5), point A (1,1)
Perimeter = D( A, C) + D (A, B) + D (B, C)
where D (A, C) = distance between A and C
so...
D(A, C) = root ( (4 - 1)^2 + (5 - 1)^2) = 5 from a 3-4-5 right triangle.
D(A, B) = root( (9- 1)^2 + (2 -1)^2) = root( 64 + 1) = root(65)
D(B, C) = root( (9 -4)^2 + (2 -5)^2) = root (25 + 9) = root(34)
Perimeter = 5 + root(65) + root(34)
Perimeter = 5 +
+
units