First find the mass of <span>solute:
Molar mass KNO</span>₃ = <span>101.1032 g/mol
mass = Molarity * molar mass * volume
mass = 0.800 * 101.1032 * 2.5
mass = 202.2064 g of KNO</span>₃
<span>To prepare 2.5 L (0800 M) of KNO3 solution, must weigh 202.2064 g of salt, dissolve in a Beker, transfer with the help of a funnel of transfer to a volumetric flask, complete with water up to the mark, capping the balloon and finally shake the solution to mix.</span>
hope this helps!
Answer: The purpose is to analyze the speed of planets around a central star.
Explanation: using variables
Answer:
5250 grams or 5.25 kg of carbon monoxide and 375 grams of hydrogen are required to form 6 kg of methanol.
Explanation:
The balanced reaction:
CO (g) + 2 H₂ (g) -> CH₃OH (l)
By stoichiometry of the reaction, the following amounts of moles of each compound participate in the reaction:
- CO: 1 mole
- H₂: 2 moles
- CH₃OH: 1 mole
Being the molar mass of each compound:
- CO: 28 g/mole
- H₂: 1 g/mole
- CH₃OH: 32 g/mole
By reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
- CO: 1 mole* 28 g/mole= 28 grams
- H₂: 2 moles* 1 g/mole= 2 grams
- CH₃OH: 1 mole* 32 g/mole= 32 grams
Being 6 kg equivalent to 6000 grams (1 kg= 1000 grams), you can apply the following rules of three:
- If by stoichiometry 32 grams of methanol are formed from 28 grams of carbon monoxide, 6000 grams of methanol are formed from how much mass of carbon monoxide?

mass of carbon monoxide= 5250 grams= 5.25 kg
If by stoichiometry 32 grams of methanol are formed from 2 grams of hydrogen, 6000 grams of methanol are formed from how much mass of hydrogen?

mass of hydrogen= 375 grams
<u><em>5250 grams or 5.25 kg of carbon monoxide and 375 grams of hydrogen are required to form 6 kg of methanol. </em></u>
A. helium, neon and argon, because they are in the same group or column
Answer:
Answer is 2nd
Explanation:
some energy is transformed into mass