Answer:
the two numbers are 16 and -25
Step-by-step explanation:
Let the two numbers be x and y
x+y=-9
x-y=-41
By substitution
y=-9-x
x-(-9-x)=-41
x+9+x=-41
2x=-41-9
2x=-50
x=-25
y=-9-(-25)
y=16
Answer:
1) The solution of the system is
![\left\begin{array}{ccc}x_1&=&5\\x_2&=&8\\x_3&=&-13\end{array}\right](https://tex.z-dn.net/?f=%5Cleft%5Cbegin%7Barray%7D%7Bccc%7Dx_1%26%3D%265%5C%5Cx_2%26%3D%268%5C%5Cx_3%26%3D%26-13%5Cend%7Barray%7D%5Cright)
2) The solution of the system is
![\left\begin{array}{ccc}x_1&=&2\\x_2&=&-7\\x_3&=&-1\end{array}\right](https://tex.z-dn.net/?f=%5Cleft%5Cbegin%7Barray%7D%7Bccc%7Dx_1%26%3D%262%5C%5Cx_2%26%3D%26-7%5C%5Cx_3%26%3D%26-1%5Cend%7Barray%7D%5Cright)
Step-by-step explanation:
1) To solve the system of equations
![\left\begin{array}{ccccccc}&3x_2&-5x_3&=&89\\6x_1&&+x_3&=&17\\x_1&-x_2&+8x_3&=&-107\end{array}\right](https://tex.z-dn.net/?f=%5Cleft%5Cbegin%7Barray%7D%7Bccccccc%7D%263x_2%26-5x_3%26%3D%2689%5C%5C6x_1%26%26%2Bx_3%26%3D%2617%5C%5Cx_1%26-x_2%26%2B8x_3%26%3D%26-107%5Cend%7Barray%7D%5Cright)
using the row reduction method you must:
Step 1: Write the augmented matrix of the system
![\left[ \begin{array}{ccc|c} 0 & 3 & -5 & 89 \\\\ 6 & 0 & 1 & 17 \\\\ 1 & -1 & 8 & -107 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%200%20%26%203%20%26%20-5%20%26%2089%20%5C%5C%5C%5C%206%20%26%200%20%26%201%20%26%2017%20%5C%5C%5C%5C%201%20%26%20-1%20%26%208%20%26%20-107%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 2: Swap rows 1 and 2
![\left[ \begin{array}{ccc|c} 6 & 0 & 1 & 17 \\\\ 0 & 3 & -5 & 89 \\\\ 1 & -1 & 8 & -107 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%206%20%26%200%20%26%201%20%26%2017%20%5C%5C%5C%5C%200%20%26%203%20%26%20-5%20%26%2089%20%5C%5C%5C%5C%201%20%26%20-1%20%26%208%20%26%20-107%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 3: ![\left(R_1=\frac{R_1}{6}\right)](https://tex.z-dn.net/?f=%5Cleft%28R_1%3D%5Cfrac%7BR_1%7D%7B6%7D%5Cright%29)
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 3 & -5 & 89 \\\\ 1 & -1 & 8 & -107 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B1%7D%7B6%7D%20%26%20%5Cfrac%7B17%7D%7B6%7D%20%5C%5C%5C%5C%200%20%26%203%20%26%20-5%20%26%2089%20%5C%5C%5C%5C%201%20%26%20-1%20%26%208%20%26%20-107%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 4: ![\left(R_3=R_3-R_1\right)](https://tex.z-dn.net/?f=%5Cleft%28R_3%3DR_3-R_1%5Cright%29)
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 3 & -5 & 89 \\\\ 0 & -1 & \frac{47}{6} & - \frac{659}{6} \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B1%7D%7B6%7D%20%26%20%5Cfrac%7B17%7D%7B6%7D%20%5C%5C%5C%5C%200%20%26%203%20%26%20-5%20%26%2089%20%5C%5C%5C%5C%200%20%26%20-1%20%26%20%5Cfrac%7B47%7D%7B6%7D%20%26%20-%20%5Cfrac%7B659%7D%7B6%7D%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 5: ![\left(R_2=\frac{R_2}{3}\right)](https://tex.z-dn.net/?f=%5Cleft%28R_2%3D%5Cfrac%7BR_2%7D%7B3%7D%5Cright%29)
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & -1 & \frac{47}{6} & - \frac{659}{6} \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B1%7D%7B6%7D%20%26%20%5Cfrac%7B17%7D%7B6%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%20-%20%5Cfrac%7B5%7D%7B3%7D%20%26%20%5Cfrac%7B89%7D%7B3%7D%20%5C%5C%5C%5C%200%20%26%20-1%20%26%20%5Cfrac%7B47%7D%7B6%7D%20%26%20-%20%5Cfrac%7B659%7D%7B6%7D%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 6: ![\left(R_3=R_3+R_2\right)](https://tex.z-dn.net/?f=%5Cleft%28R_3%3DR_3%2BR_2%5Cright%29)
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & \frac{37}{6} & - \frac{481}{6} \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B1%7D%7B6%7D%20%26%20%5Cfrac%7B17%7D%7B6%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%20-%20%5Cfrac%7B5%7D%7B3%7D%20%26%20%5Cfrac%7B89%7D%7B3%7D%20%5C%5C%5C%5C%200%20%26%200%20%26%20%5Cfrac%7B37%7D%7B6%7D%20%26%20-%20%5Cfrac%7B481%7D%7B6%7D%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 7: ![\left(R_3=\left(\frac{6}{37}\right)R_3\right)](https://tex.z-dn.net/?f=%5Cleft%28R_3%3D%5Cleft%28%5Cfrac%7B6%7D%7B37%7D%5Cright%29R_3%5Cright%29)
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & 1 & -13 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B1%7D%7B6%7D%20%26%20%5Cfrac%7B17%7D%7B6%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%20-%20%5Cfrac%7B5%7D%7B3%7D%20%26%20%5Cfrac%7B89%7D%7B3%7D%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-13%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 8: ![\left(R_1=R_1-\left(\frac{1}{6}\right)R_3\right)](https://tex.z-dn.net/?f=%5Cleft%28R_1%3DR_1-%5Cleft%28%5Cfrac%7B1%7D%7B6%7D%5Cright%29R_3%5Cright%29)
![\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & 1 & -13 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%200%20%26%205%20%5C%5C%5C%5C%200%20%26%201%20%26%20-%20%5Cfrac%7B5%7D%7B3%7D%20%26%20%5Cfrac%7B89%7D%7B3%7D%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-13%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 9: ![\left(R_2=R_2+\left(\frac{5}{3}\right)R_3\right)](https://tex.z-dn.net/?f=%5Cleft%28R_2%3DR_2%2B%5Cleft%28%5Cfrac%7B5%7D%7B3%7D%5Cright%29R_3%5Cright%29)
![\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 8 \\\\ 0 & 0 & 1 & -13 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%200%20%26%205%20%5C%5C%5C%5C%200%20%26%201%20%26%200%20%26%208%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-13%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 10: Rewrite the system using the row reduced matrix:
![\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 8 \\\\ 0 & 0 & 1 & -13 \end{array} \right] \rightarrow \left\begin{array}{ccc}x_1&=&5\\x_2&=&8\\x_3&=&-13\end{array}\right](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%200%20%26%205%20%5C%5C%5C%5C%200%20%26%201%20%26%200%20%26%208%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-13%20%5Cend%7Barray%7D%20%5Cright%5D%20%5Crightarrow%20%5Cleft%5Cbegin%7Barray%7D%7Bccc%7Dx_1%26%3D%265%5C%5Cx_2%26%3D%268%5C%5Cx_3%26%3D%26-13%5Cend%7Barray%7D%5Cright)
2) To solve the system of equations
![\left\begin{array}{ccccccc}4x_1&-x_2&+3x_3&=&12\\2x_1&&+9x_3&=&-5\\x_1&+4x_2&+6x_3&=&-32\end{array}\right](https://tex.z-dn.net/?f=%5Cleft%5Cbegin%7Barray%7D%7Bccccccc%7D4x_1%26-x_2%26%2B3x_3%26%3D%2612%5C%5C2x_1%26%26%2B9x_3%26%3D%26-5%5C%5Cx_1%26%2B4x_2%26%2B6x_3%26%3D%26-32%5Cend%7Barray%7D%5Cright)
using the row reduction method you must:
Step 1:
![\left[ \begin{array}{ccc|c} 4 & -1 & 3 & 12 \\\\ 2 & 0 & 9 & -5 \\\\ 1 & 4 & 6 & -32 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%204%20%26%20-1%20%26%203%20%26%2012%20%5C%5C%5C%5C%202%20%26%200%20%26%209%20%26%20-5%20%5C%5C%5C%5C%201%20%26%204%20%26%206%20%26%20-32%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 2: ![\left(R_1=\frac{R_1}{4}\right)](https://tex.z-dn.net/?f=%5Cleft%28R_1%3D%5Cfrac%7BR_1%7D%7B4%7D%5Cright%29)
![\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 2 & 0 & 9 & -5 \\\\ 1 & 4 & 6 & -32 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B3%7D%7B4%7D%20%26%203%20%5C%5C%5C%5C%202%20%26%200%20%26%209%20%26%20-5%20%5C%5C%5C%5C%201%20%26%204%20%26%206%20%26%20-32%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 3: ![\left(R_2=R_2-\left(2\right)R_1\right)](https://tex.z-dn.net/?f=%5Cleft%28R_2%3DR_2-%5Cleft%282%5Cright%29R_1%5Cright%29)
![\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & \frac{1}{2} & \frac{15}{2} & -11 \\\\ 1 & 4 & 6 & -32 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B3%7D%7B4%7D%20%26%203%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7B2%7D%20%26%20%5Cfrac%7B15%7D%7B2%7D%20%26%20-11%20%5C%5C%5C%5C%201%20%26%204%20%26%206%20%26%20-32%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 4: ![\left(R_3=R_3-R_1\right)](https://tex.z-dn.net/?f=%5Cleft%28R_3%3DR_3-R_1%5Cright%29)
![\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & \frac{1}{2} & \frac{15}{2} & -11 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B3%7D%7B4%7D%20%26%203%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7B2%7D%20%26%20%5Cfrac%7B15%7D%7B2%7D%20%26%20-11%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B17%7D%7B4%7D%20%26%20%5Cfrac%7B21%7D%7B4%7D%20%26%20-35%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 5: ![\left(R_2=\left(2\right)R_2\right)](https://tex.z-dn.net/?f=%5Cleft%28R_2%3D%5Cleft%282%5Cright%29R_2%5Cright%29)
![\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & 1 & 15 & -22 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B3%7D%7B4%7D%20%26%203%20%5C%5C%5C%5C%200%20%26%201%20%26%2015%20%26%20-22%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B17%7D%7B4%7D%20%26%20%5Cfrac%7B21%7D%7B4%7D%20%26%20-35%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 6: ![\left(R_1=R_1+\left(\frac{1}{4}\right)R_2\right)](https://tex.z-dn.net/?f=%5Cleft%28R_1%3DR_1%2B%5Cleft%28%5Cfrac%7B1%7D%7B4%7D%5Cright%29R_2%5Cright%29)
![\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcccc%7D%201%20%26%200%20%26%20%5Cfrac%7B9%7D%7B2%7D%20%26%20-%20%5Cfrac%7B5%7D%7B2%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%2015%20%26%20-22%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B17%7D%7B4%7D%20%26%20%5Cfrac%7B21%7D%7B4%7D%20%26%20-35%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 7: ![\left(R_3=R_3-\left(\frac{17}{4}\right)R_2\right)](https://tex.z-dn.net/?f=%5Cleft%28R_3%3DR_3-%5Cleft%28%5Cfrac%7B17%7D%7B4%7D%5Cright%29R_2%5Cright%29)
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & - \frac{117}{2} & \frac{117}{2} \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B9%7D%7B2%7D%20%26%20-%20%5Cfrac%7B5%7D%7B2%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%2015%20%26%20-22%20%5C%5C%5C%5C%200%20%26%200%20%26%20-%20%5Cfrac%7B117%7D%7B2%7D%20%26%20%5Cfrac%7B117%7D%7B2%7D%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 8: ![\left(R_3=\left(- \frac{2}{117}\right)R_3\right)](https://tex.z-dn.net/?f=%5Cleft%28R_3%3D%5Cleft%28-%20%5Cfrac%7B2%7D%7B117%7D%5Cright%29R_3%5Cright%29)
![\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & 1 & -1 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcccc%7D%201%20%26%200%20%26%20%5Cfrac%7B9%7D%7B2%7D%20%26%20-%20%5Cfrac%7B5%7D%7B2%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%2015%20%26%20-22%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-1%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 9: ![\left(R_1=R_1-\left(\frac{9}{2}\right)R_3\right)](https://tex.z-dn.net/?f=%5Cleft%28R_1%3DR_1-%5Cleft%28%5Cfrac%7B9%7D%7B2%7D%5Cright%29R_3%5Cright%29)
![\left[ \begin{array}{cccc} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & 1 & -1 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcccc%7D%201%20%26%200%20%26%200%20%26%202%20%5C%5C%5C%5C%200%20%26%201%20%26%2015%20%26%20-22%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-1%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 10: ![\left(R_2=R_2-\left(15\right)R_3\right)](https://tex.z-dn.net/?f=%5Cleft%28R_2%3DR_2-%5Cleft%2815%5Cright%29R_3%5Cright%29)
![\left[ \begin{array}{cccc} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 0 & -7 \\\\ 0 & 0 & 1 & -1 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcccc%7D%201%20%26%200%20%26%200%20%26%202%20%5C%5C%5C%5C%200%20%26%201%20%26%200%20%26%20-7%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-1%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 11:
![\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 0 & -7 \\\\ 0 & 0 & 1 & -1 \end{array} \right]\rightarrow \left\begin{array}{ccc}x_1&=&2\\x_2&=&-7\\x_3&=&-1\end{array}\right](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%200%20%26%202%20%5C%5C%5C%5C%200%20%26%201%20%26%200%20%26%20-7%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-1%20%5Cend%7Barray%7D%20%5Cright%5D%5Crightarrow%20%5Cleft%5Cbegin%7Barray%7D%7Bccc%7Dx_1%26%3D%262%5C%5Cx_2%26%3D%26-7%5C%5Cx_3%26%3D%26-1%5Cend%7Barray%7D%5Cright)
I think the answer is (-8,-26)
Answer:
Both the relations are functions, the correct answer is a.
Step-by-step explanation:
In order to solve this problem we will first find the inverse relation as shown below:
![y = 3x^2 + 5\\x = 3y^2 + 5\\3y^2 = x - 5\\y^2 = \frac{x - 5}{3}\\y = \sqrt{\frac{x - 5}{3}} = \frac{\sqrt{x - 5}}{\sqrt{3}}\\y = \frac{\sqrt{x - 5}\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{\sqrt{3x - 15}}{3}](https://tex.z-dn.net/?f=y%20%3D%203x%5E2%20%2B%205%5C%5Cx%20%3D%203y%5E2%20%2B%205%5C%5C3y%5E2%20%3D%20x%20-%205%5C%5Cy%5E2%20%3D%20%5Cfrac%7Bx%20-%205%7D%7B3%7D%5C%5Cy%20%3D%20%5Csqrt%7B%5Cfrac%7Bx%20-%205%7D%7B3%7D%7D%20%3D%20%5Cfrac%7B%5Csqrt%7Bx%20-%205%7D%7D%7B%5Csqrt%7B3%7D%7D%5C%5Cy%20%3D%20%5Cfrac%7B%5Csqrt%7Bx%20-%205%7D%5Csqrt%7B3%7D%7D%7B%5Csqrt%7B3%7D%5Csqrt%7B3%7D%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B3x%20-%2015%7D%7D%7B3%7D)
Functions are relations between two groups of numbers, for which the input must generate only one output. Using this definition we can classify both the relation and its inverse as a function, therefore the correct answer is a.
Answer:
undefined
Step-by-step explanation:
Since we have two points we can use the slope formula
m = (y2-y1)/(x2-x1)
= (-2--6)/(4-4)
= (-2+6) / 0
We cannot divide by 0 so the slope is undefined