1.8 is the mechanical advantage of the lever.
<h3>Definition of mechanical advantage</h3>
The theoretical mechanical advantage of a system is the ratio of the force that performs the useful work to the force applied, assuming there is no friction in the system.
The advantage gained by the use of a mechanism in transmitting force specifically the ratio of the force that performs the useful work of a machine to the force that is applied to the machine.
Mechanical advantage is given by the ratio of the load lifted to the force applied to lift the load.
In this case, Mechanical advantage=L/E where L is the load and E is the effort applied.
Mechanical advantage= 90/50 =1.8
Question-you use a lever to lift a heavy tree branch. you apply a force of 50 n and the lever lifts the branch with a force of 90 n. what is the mechanical advantage of the lever?
To learn more about the Mechanical advantage visit the link
brainly.com/question/16617083
#SPJ4
<em>weight = (mass) x (gravity)</em>
Weight = (5.00 kg) x (9.81 m/s²)
weight = (5.00 x 9.81) (kg-m/s²)
<em>Weight = 49.05 Newton</em>
Answer:
stress tension tensile strength
Explanation:
The maximum stress which a material can withstand when it is pulled apart is its: stress tension tensile strength.
Medical movement for disabilities people
Given parameters;
Time taken to complete a lap = 8.667s
Radius of flower = 13.9cm
convert to SI unit of m, 100cm = 1m
13.9cm gives
= 0.139m
Unknown = speed
To solve this problem, we need to first find the circumference of the flower.
Circumference of the circular flower = 2 π r
where r is the radius of the flower;
Circumference = 2 x 3.142 x 0.139 = 0.87m
Now to find the how fast the bug is travelling,
Speed = 
Since the bug covered 1 lap, the distance is 0.87m
Now input the parameters and solve for speed;
Speed =
= 0.1m/s
The bug is travelling at a speed of 0.1m/s