Some examples of constant velocity (or at least almost- constant velocity) motion include (among many others): • A car traveling at constant speed without changing direction. A hockey puck sliding across ice. A space probe that is drifting through interstellar space.
Answer: 288.8 m
Explanation:
We have the following data:
is the time it takes to the child to reach the bottom of the slope
is the initial velocity (the child started from rest)
is the angle of the slope
is the length of the slope
Now, the Force exerted on the sled along the ramp is:
(1)
Where
is the mass of the sled and
its acceleration
In addition, if we draw a free body diagram of this sled, the force along the ramp will be:
(2)
Where
is the acceleration due gravity
Then:
(3)
Finding
:
(4)
(5)
(6)
Now, we will use the following kinematic equations to find
:
(7)
(8)
Where
is the final velocity
Finding
from (7):
(9)
(10)
Substituting (10) in (8):
(11)
Finding
:

Each station can detect how far away the epicenter was. So each station basically has a circle made of possible epicenters. When you have three, you narrow it down to one, final point.
A., 101.7 km/h is the correct answer for this question
The equation of state for an ideal gas is

where p is the gas pressure, V the volume, n the number of moles, R the gas constant and T the temperature.
The equation of state for the initial condition of the gas is

(1)
While the same equation for the final condition is

(2)
We know that in the final condition, half of the mass of the gas is escaped. This means that the final volume of the gas is half of the initial volume, and also that the final number of moles is half the initial number of moles, so we can write:


If we substitute these relationship inside (1), and we divide (1) by (2), we get

And since the initial temperature of the gas is

, we can find the final temperature of the gas: