Answer:
Final velocity (v) = 36 m/s
Distance traveled (s) = 2,160 m
Explanation:
Given:
Initial velocity (u) = 0
Acceleration (a) = 0.3 m/s
Time travel (t) = 2 minutes = 120 seconds
Find:
Final velocity (v) = ?
Distance traveled (s) = ?
Computation:
v = u + at
v = 0 + 0.3(120)
v = 0.3(120)
v = 36 m/s
Final velocity (v) = 36 m/s
Distance traveled (s) = ut + (1/2)at²
Distance traveled (s) = (0.5)(0.3 × 120 × 120)
Distance traveled (s) = 2,160 m
Answer:
m= 10 kg a = 52 m / s²
Explanation:
For this problem we must use Newton's second law, let's apply it to each axis
X axis
F - fr = ma
The equation for the force of friction is
-fr = miu N
Axis y
N- W = 0
N = mg
Let's replace and calculate laceration
F - miu (mg) = ma
a = F / m - mi g
a = 527.018 / m - 0.17 9.8
We must know the mass of the body suppose m = 10 kg
a = 527.018 / 10 - 1,666
a = 52 m / s²
Answer:
It has a mass of 40 kg.
Explanation:
Because Force = mass x Acceleration or F = m a, we could say that the mass is force/acceleration which in your case is 2,400/60 which equals 40 kg.
<u>Answer:</u>
The spinning of the earth around its own axis causes day and night.
<u>Explanation:</u>
Earth has two types of motions. It spins around its own axis causing day and night every 12 hours and completes a rotation in 23.93 hours that make a full day. The part of the earth that faces sunlight during spinning experiences day and the other part has night. It also rotates around the sun and completes one rotation in 365 days that makes a year.