Simple way to see it is to multiply the value opposite of the axis you're flipping it over by -1. For example the point (-5,7) would become (5,7) when reflected over the y-axis, because the point is moving from the left to the right. This means the triangle would be (1,3) (5,3) and (5,7) when reflected over the y-axis. For reflection over the x-axis it would be (-1,-3) (-5,-3) and (-5,-7) because each point is moving down.
Part A
Your problem statement already shows you the conversion.
Bottles purchased: 5×10¹⁰
Bottles recycled: 8.3×10⁹
Part B
The ratio of bottles purchased to bottles recycled is
... (5×10¹⁰)/(8.3×10⁹) = 0.6×10¹ = 6.0
The number of bottles purchased is 6 times the number of bottles recycle.
The y-intercept (where x = 0) of the equation is at -20.
For every 60 the x runs, the y falls by -10. Use rise over run to determine the slope of the equation.

Slope-intercept form is determined by the following equation:

m is your slope, and b is your y-intercept.
Plug the slope and y-intercept into the equation.
The answer to your question is: Yes, someone undoubtedly can.
Although you haven't asked to be told or shown how to solve it, I'm here
already, so I may as well stick around and go through it with you.
The sheet is telling you to find the solutions to two equations, AND THEN
DO SOMETHING WITH THE TWO SOLUTIONS. But you've cut off the
instructions in the pictures, so all we have are the two equations, and
you'll have to figure out what to do with their solutions.
<u>First equation:</u>
(2/5) x - 6 = -2
Add 6 to each side:
(2/5) x = 4
Multiply each side by 5:
2x = 20
Divide each side by 2 :
<u>x = 10</u>
<u>Second equation:</u>
-3y + 1/4 = 13/4
Subtract 1/4 from each side:
-3y = 12/4
Multiply each side by 4 :
-12 y = 12
Divide each side by -12 :
<u> y = -1</u>
Using an exponential function, it is found that it takes 5.42 years for the car to halve in value.
<h3>What is an exponential function?</h3>
A decaying exponential function is modeled by:

In which:
- A(0) is the initial value.
- r is the decay rate, as a decimal.
In this problem, the car depreciates 12% a year in value, hence r = 0.12 and the equation is given by:
.
It halves in value at t years, for which A(t) = 0.5A(0), hence:






t = 5.42.
It takes 5.42 years for the car to halve in value.
More can be learned about exponential functions at brainly.com/question/25537936
#SPJ1