1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
azamat
3 years ago
6

Jaclyn plays singles for South's varsity tennis team. During the match against North, Jaclyn won the sudden death tiebreaker poi

nt with a cross-court passing shot. The 57.5-gram ball hit her racket with a northward velocity of 26.7 m/s. Upon impact with her 331-gram racket, the ball rebounded in the exact opposite direction (and along the same general trajectory) with a speed of 29.5 m/s.
A. Determine the pre-collision momentum of the ball.
B. Determine the post-collision momentum of the ball.
C. Determine the momentum change of the ball.
D. Determine the velocity change of the racket.
Physics
1 answer:
Kipish [7]3 years ago
8 0

Answer:

A) pbin = 1.535 Kgm/s (+)

B) pbf = 1.696 Kgm/s (-)

C) Δp = 3.3925 Kgm/s

D) Δvr = 10.249 m/s

Explanation:

Given

Mass of the ball: m = 57.5 g = 0.0575 Kg

Initial speed of the ball: vbi = 26.7 m/s

Mass of the racket: M = 331 g = 0.331 Kg

Final speed of the ball: vbf = 29.5 m/s

A) We use the formula

pbin = m*vbi = 0.0575 Kg*26.7 m/s = 1.535 Kgm/s (+)

B) pbf = m*vbf = 0.0575 Kg*29.5 m/s = 1.696 Kgm/s (-)

C) We use the equation

Δp = pbf - pbin = 1.696 Kgm/s - (-1.535 Kgm/s) = 3.3925 Kgm/s

D) Knowing that

Δp = 3.3925 Kgm/s

we can say that

Δp = M*Δvr

⇒  Δvr = Δp / M

⇒  Δvr = 3.3925 Kgm/s / 0.331 Kg

⇒  Δvr = 10.249 m/s

You might be interested in
Where do light bulbs get their energy from?(1 point)
N76 [4]

<u>for instance, steel has a higher thermal conductivity than plastic. Hence, the steel plate gives away heat to the ice block faster than a plastic block does. As a result, ice melts faster on a steel plate than on a plastic one. Faster an object draws heat, the colder it feels.</u>

8 0
2 years ago
Read 2 more answers
A rod of very small diameter with a mass 2m and length 3L is placed along the xaxis with one end at the origin. An identical rod
rewona [7]

Answer:

coordinates of the center of mass for these two rods

(x_{cm}, y_{cm})= (\frac{3L}{4},  \frac{3L}{4})cm

Explanation:

given

mass of a rod = 2m

length of the rod = 3L

mass of two rods = 2(2m) = 4m

radius = diameter/2 = \frac{3L}{2}

attached is the diagram and solution to the question

5 0
3 years ago
Hans Full is pulling on a rope to drag his backpack to school across the ice. He pulls upwards and rightwards with a force of 22
natka813 [3]

Answer:

2420 J

Explanation:

From the question given above, the following data were obtained:

Force (F) = 22.9 N

Angle (θ) = 35°

Distance (d) = 129 m

Workdone (Wd) =?

The work done can be obtained by using the following formula:

Wd = Fd × Cos θ

Wd = 22.9 × 129 × Cos 35

Wd = 22.9 × 129 × 0.8192

Wd ≈ 2420 J

Thus, the workdone is 2420 J.

3 0
3 years ago
If cells were not able to obtain amino acids, what macromolecule would not be able to be synthesized
Zielflug [23.3K]

Answer:

protein

Explanation:

protein is a very large complex macro-molecule that requires amino acids

5 0
2 years ago
A 6.5 kg rock thrown down from a 120m high cliff with initial velocity 18 m/s down. Calculate
Olegator [25]

Answer:

See the answers below.

Explanation:

In order to solve this problem we must use the principle of energy conservation. Which tells us that the energy of a body will always be the same regardless of where it is located. For this case we have two points, point A and point B. Point A is located at the top at 120 [m] and point B is in the middle of the cliff at 60 [m].

E_{A}=E_{B}

The important thing about this problem is to identify the types of energy at each point. Let's take the reference level of potential energy at a height of zero meters. That is, at this point the potential energy is zero.

So at point A we have potential energy and since a velocity of 18 [m/s] is printed, we additionally have kinetic energy.

E_{A}=E_{pot}+E_{kin}\\E_{A}=m*g*h+\frac{1}{2}*m*v^{2}

At Point B the rock is still moving downward, therefore we have kinetic energy and since it is 60 [m] with respect to the reference level we have potential energy.

E_{B}=m*g*h+\frac{1}{2}*m*v^{2}

Therefore we will have the following equation:

(6.5*9.81*120)+(0.5*6.5*18^{2} )=(6.5*9.81*60)+(0.5*6.5*v_{B}^{2} )\\3.25*v_{B}^{2} =4878.9\\v_{B}=\sqrt{1501.2}\\v_{B}=38.75[m/s]

The kinetic energy can be easily calculated by means of the kinetic energy equation.

KE_{B}=\frac{1}{2} *m*v_{B}^{2}\\KE_{B}=0.5*6.5*(38.75)^{2}\\KE_{B}=4878.9[J]

In order to calculate the velocity at the bottom of the cliff where the reference level of potential energy (potential energy equal to zero) is located, we must pose the same equation, with the exception that at the new point there is only kinetic energy.

E_{A}=E_{C}\\6.5*9.81*120+(0.5*9.81*18^{2} )=0.5*6.5*v_{C}^{2} \\v_{c}^{2} =\sqrt{2843.39}\\v_{c}=53.32[m/s]

5 0
3 years ago
Other questions:
  • Ryan wants to use the fermi process to estimate the number of basketballs that would fill a gymnasium. as part of the process, h
    12·2 answers
  • Where did the elements in our solar system come from? they condensed out of hot gas clouds surrounding the early sun. they were
    11·1 answer
  • Which statements are false? Money comes in different forms. Money is indivisible. M1 includes notes, coins, and funds in checkab
    11·2 answers
  • A parallel plate capacitor is connected to a battery that maintains a constant potential difference between the plates. If the p
    6·1 answer
  • Shotguns are examples of
    10·1 answer
  • If the jet is moving at a speed of 1140 km/h at the lowest point of the loop, determine the minimum radius of the circle so that
    10·1 answer
  • A commuter train passes a passenger platform at a constant speed of 39.6 m/s. The train horn is sounded at its characteristic fr
    7·1 answer
  • What is the definition of the half-life of a radioactive isotope?
    13·1 answer
  • A car initially miving at 0.5m/s along a track.the car come to rest after travelling 1m.the car is repeated on the same of track
    15·1 answer
  • A ball is projected at an angle of 30° above the horizontal with a speed of 35 m/s. What will be its approximate horizontal rang
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!