Answer:
<em>Choice: c. 6sec</em>
Explanation:
<u>Horizontal Launch
</u>
When an object is thrown horizontally with a speed (v) from a height (h), it describes a curved path ruled by gravity until it finally hits the ground.
The horizontal component of the velocity is always constant because no acceleration exists in that direction, thus:

The vertical component of the velocity changes in time because gravity makes the object fall at increasing speed given by:

Where 
To calculate the time the object takes to hit the ground, we use the same formula as for free-fall, since the time does not depend on the initial speed:

The marble rolls the edge of the table at a height of h=180 m, thus:


t = 6 sec
Choice: c. 6sec
Answer:
2,250J
Explanation:
W = Fs = (450)(5) = 2,250
Answer:
a) The final pressure is 1.68 atm.
b) The work done by the gas is 305.3 J.
Explanation:
a) The final pressure of an isothermal expansion is given by:

Where:
: is the initial pressure = 5.79 atm
: is the final pressure =?
: is the initial volume = 420 cm³
: is the final volume = 1450 cm³
n: is the number of moles of the gas
R: is the gas constant
Hence, the final pressure is 1.68 atm.
b) The work done by the isothermal expansion is:

Therefore, the work done by the gas is 305.3 J.
I hope it helps you!
Answer:
0.699 L of the fluid will overflow
Explanation:
We know that the change in volume ΔV = V₀β(T₂ - T₁) where V₀ = volume of radiator = 21.1 L, β = coefficient of volume expansion of fluid = 400 × 10⁻⁶/°C
and T₁ = initial temperature of radiator = 12.2°C and T₂ = final temperature of radiator = 95.0°C
Substituting these values into the equation, we have
ΔV = V₀β(T₂ - T₁)
= 21.1 L × 400 × 10⁻⁶/°C × (95.0°C - 12.2°C)
= 21.1 L × 400 × 10⁻⁶/°C × 82.8°C = 698832 × 10⁻⁶ L
= 0.698832 L
≅ 0.699 L = 0.7 L to the nearest tenth litre
So, 0.699 L of the fluid will overflow
Potential energy is highest at the top of the loop, and kinetic energy is highest at the bottom of the loop.