Answer:
Approximately 1.62 × 10⁻⁴ V.
Explanation:
The average EMF in the coil is equal to
,
Why does this formula work?
By Faraday's Law of Induction, the EMF induced in a coil (one loop) is equal to the rate of change in the magnetic flux through the coil.
.
Finding the average EMF in the coil is similar to finding the average velocity.
.
However, by the Fundamental Theorem of Calculus, integration reverts the action of differentiation. That is:
.
Hence the equation
.
Note that information about the constant term in the original function will be lost. However, since this integral is a definite one, the constant term in won't matter.
Apply this formula to this question. Note that , the magnetic flux through the coil, can be calculated with the equation
.
For this question,
- is the strength of the magnetic field.
- is the area of the coil.
- is the number of loops in the coil.
- is the angle between the field lines and the coil.
- At , the field lines are parallel to the coil, .
- At , the field lines are perpendicular to the coil, .
Initial flux: .
Final flux: .
Average EMF, which is the same as the average rate of change in flux:
.
<h2>5.3 km</h2>
Explanation:
This question involves continuous displacement in various directions. When it becomes difficult to imagine, vector analysis becomes handy.
Let us denote each of the individual displacements by a vector. Consider the unit vectors as the unit vectors in the direction of East and North respectively.
By simple calculations, we can derive the unit vectors in the directions North, South of West and North of West respectively.
So Total displacement vector = Sum of individual displacement vectors.
Displacement vector =
Magnitude of Displacement =
∴ Total displacement =
The bouncy ball experiences the greater momentum change.
To understand why, you need to remember that momentum is actually
a vector quantity ... it has a size AND it has a direction too.
The putty and the ball have the same mass, and you throw them
with the same speed. So, on the way from your hand to the wall,
they both have the same momentum.
Call it " M in the direction toward the wall ".
After they both hit the wall:
-- The putty has zero momentum.
Its momentum changed by an amount of M .
-- The ball has momentum of " M in the direction away from the wall ".
Its momentum changed by an amount of 2M .
Answer:
Explanation:
Given
Radius of A is twice of B i.e.
Also Potential of both sphere is same
thus
(b)Ratio of
Electric Field is given by
thus ----1
----2
Divide 2 by 1
Is there any options or just a type up answer?