1. Galactosemia is a disease that will only be expressed when a person is<span><span><span> homozygotic recessive for that trait. It's the same as saying it </span> has</span> 2 recessive alleles.
Dominant allele-</span><span> G
recessive allele- g
</span>
Homozygotic dominant: GG <span><span>(doesn't express the disease)
</span>Heterozygotic : Gg (doesn't express the disease)
Homozygotic recessive: gg (expresses it)</span>
2.
-Mary has this genotype: G_ . This means it can be GG or Gg
-The exercise already says that justin's mother is GG (<span>Homozygotic dominant)
</span>- If his mother is GG, one of these G's is going to be passed to Justin. So, his genotype is either GG or Gg. Since we are not sure we write as: G_.
Justin's genotype: G_
3.
-Justin's uncle has galactosemia so his genotype is: gg
-If the uncle was able to receive two recessive alleles it means the mother had one to pass, and so did the father. However, in the diagram, it's not pointed out that they have a disease so it only leaves one possible genotype: Gg. Justin's grandparents are both Gg.
4. The last person to analyze is Justin's father.
If we crossed the grandparents (Gg x Gg) we could obtain these genotypes: GG, Gg, gg.
Justin's father doesn't express the trait, so it's not gg. That leaves us with either GG or Gg. Since we can't know for sure, onece again we write as G_
Justin's father: G_
Explanation:
Answer : The process of transpiration can be demonstrated by tying a polythene bag around the rose plant and keeping the plant in sunlight for one or two hours. Droplets of water would be seen on the inner sides of polythene bag due to transpiration.
Answer:
A. Nature exists as a resource that should be preserved for future generations.
Explanation:
Deep ecology movement is an idea that all living organisms on the earth have right to live with their basic moral values. All organisms must be respected irrespective of their size, shape or other physical features. Natural resources are scarce and so they should not be wasted and must be saved for future generations.
Answer;
ADP gains a phosphate group to create ATP, which stores energy for making sugars.
Explanation;
-ATP is a molecule that carries energy within cells. It is the main energy currency of the cell, and it is an end product of the processes of photophosphorylation (adding a phosphate group to a molecule using energy from light), cellular respiration, and fermentation.
-ATP is the main carrier of energy that is used for all cellular activities. When ATP is hydrolyzed and converted to adenosine diphosphate (ADP), energy is released. The removal of one phosphate group releases 7.3 kilocalories per mole, or 30.6 kilojoules per mole, under standard conditions.