Answer:
the periodic table is important because it is organized to provide a alot of information about elements and how they relate to one another in one easy-to-use reference. The table can be used to predict the properties of elements, even those that have not yet been discovered.
Explanation:
35°c is equal to 95°f
To do this multiply 35 and 1.8
35 x 1.8=63
Now add 32
Resulting in the answer 95
(The equation for to solve for c and f is c1.8+32=f
Answer:
D. Atoms are like solid balls
Explanation:
John Dalton proposed that all matter is composed of very small things which he called atoms. This was not a completely new concept as the ancient Greeks (notably Democritus) had proposed that all matter is composed of small, indivisible (cannot be divided) objects. When Dalton proposed his model electrons and the nucleus were unknown.
132 g of C , 22 g of H , 176 g of O
132 + 22 + 176 => 330 g <span>of the substance
</span>Now convert the masses in <span>moles :
</span>
C = 12.0 u H = 1.0 u O = 16.0 u
C = 132 / 12.0 => 11 moles
H = 22 / 1.0 => 22 moles
O = 176 / 16.0 => 11 moles
Using the values obtained the lowest proportion in mols of elements present, simply divide the values found for the least of them<span>:
</span>
C = 11 / 11 => 1
H = 22 / 11 => 2
O = 11 / 11 => 1
formula empirically <span>is : CH</span>₂O
hope this helps!
Answer:
0.259 kJ/mol ≅ 0.26 kJ/mol.
Explanation:
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = ??? J).
m is the mass of the ice (m = 100.0 g).
c is the specific heat of water (c of ice = 4.186 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 21.56°C - 25.0°C = -3.44°C).
<em>∵ Q = m.c.ΔT</em>
∴ Q = (100.0 g)(4.186 J/g.°C)(-3.44°C) = -1440 J = -1.44 kJ.
<em>∵ ΔH = Q/n</em>
n = mass/molar mass = (100.0 g)/(18.0 g/mol) = 5.556 mol.
∴ ΔH = (-1.44 kJ)/(5.556 mol) = 0.259 kJ/mol ≅ 0.26 kJ/mol.