Answer:
Explanation:
Approx.
425
⋅
g
Explanation:
2
A
l
(
s
)
+
3
C
l
2
(
g
)
→
2
A
l
C
l
3
(
s
)
You have given a stoichiometrically balanced equation, so bravo.
The equation explicitly tells us that
54
⋅
g
of aluminum metal reacts with
6
×
35.45
⋅
g
C
l
2
gas to give
266.7
⋅
g
of
aluminum trichloride
hope this helps
Answer: In order to increase the rate of reaction between hydrochloric acid and sugar increase the concentration of hydrochloric acid to 2 M because greater concentration results in more collision between the reactants.
Explanation:
More is the concentration of reactant molecules more will be the number of collisions between their molecules. As a result, more readily the products will be formed.
Hence, for the given reaction when concentration of HCl is increased then there will be increase in the number of collisions between reactants.
Thus, we can conclude that in order to increase the rate of reaction between hydrochloric acid and sugar increase the concentration of hydrochloric acid to 2 M because greater concentration results in more collision between the reactants.
<u>c.</u> 12. preparing data tables and gathering safety equipment
<u>b.</u> 13. reading all instructions before beginning a science lab
<u>a.</u> 14. recognizing what a picture of a hand means
<u>e.</u> 15. wiping your work area with a wet paper towel
<u>d.</u> 16. wearing goggles and an apron
Answer:
pH = 3.49
Explanation:
We have a buffer system formed by a weak acid (HNO₂) and its conjugate base (NO₂⁻ coming from KNO₂). We can calculate the pH of a buffer ssytem using the Henderson-Hasselbach equation.
pH = pKa + log [base] / [acid]
pH = -log Ka + log [NO₂⁻] / [HNO₂]
pH = -log 4.50 × 10⁻⁴ + log 0.290 M / 0.210 M
pH = 3.49