That would be the first option Ca(OH)2 + H2SO4 → CaSO4 + 2H2O.
The Ca replaces the H2 in H2SO4, and the H2 replaces the Ca is Ca(OH)2.
The balanced equation is
<span>2 C6H6 +15 O2 = 12 CO2 + 6 H2O </span>
<span>the ratio between C6H6 and CO2 is 2 : 12 </span>
<span>moles CO2 produced = 7.94 x 12 / 2 =47.6</span>
Answer:
Both require time, but velocity requires displacement and speed requires distance
Explanation:
For calculating speed we require time and distance because speed is defined as the distance per unit time and as speed is a scalar quantity it does not have any direction
But for calculating the velocity we require time as well as displacement because velocity is defined as the displacement per unit time and as velocity is a vector quantity it has direction
Displacement is the shortest distance between the initial position and the final position and it has a specified direction as well
Answer:
Molarity = 0.3 M
Explanation:
Given data:
Moles of NaOH = 0.720 mol
Volume of water = 2.40 L
Molarity = ?
Solution:
Molarity is used to describe the concentration of solution. It tells how many moles are dissolve in per litter of solution.
Formula:
Molarity = number of moles of solute / L of solution
Molarity = 0.720 mol / 2.40 L
Molarity = 0.3 mol/L
Molarity = 0.3 M
Answer:
Molarity is a unit that measures how much moles of solute dissolved in a liter of solvent. Molarity expressed using capital M while molarity, a different unit, expressed using lower case m.
We want to make 0.005 M solution which means we need 0.005 moles of KmnO4 per liter of water. First, we have to calculate how many grams of KMnO4 we need for the solution.
We want to make 250ml solution, so the number of moles of KMnO4 we need will be: 0.005 mol/liter *(250 ml * 1liter/1000ml)= 0.005 mol/liter * 1/4 liter = 0.00125 moles
The molecular mass of KMnO4 is 158g/mol, so the mass of KMnO4 we need will be: 0.00125 moles * 158g/mol= 0.1975 grams
We know that we need 0.1975 g of KMnO4, now we weigh them and put it inside a dish. After that, we prepare Erlenmeyer or a volumetric flask filled with water half of the volume needed(125ml). Pour the weighted solute into the flask, stir until all solute dissolved.
Then we add water to the container slowly until its volume reaches the 250ml mark.