1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ICE Princess25 [194]
3 years ago
12

9. Draw the number line graph of 0.4.

Mathematics
1 answer:
Evgesh-ka [11]3 years ago
4 0
The number line graph of 0.4 is here.

You might be interested in
Alfonso went to famous Sam’s appliance store
bonufazy [111]
This is a true statement, or false depending on whether Alfonso actually did or not. There's no proof.
6 0
3 years ago
An insurance policy sells for $800. Based on past data, an average of 1 in 50
skad [1K]

Answer: i needed this question too!

7 0
3 years ago
Harrison has 80 CDs in his music collection.
melamori03 [73]

Answer:

THE ANSWER IS 9 CDS THANK ME LATER

Step-by-step explanation:

3 0
3 years ago
A triangle is formed from the points L(-3, 6), N(3, 2) and P(1, -8). Find the equation of the following lines:
Dima020 [189]

Answer:

Part A) y=\frac{3}{4}x-\frac{1}{4}  

Part B)  y=\frac{2}{7}x-\frac{5}{7}

Part C) y=\frac{2}{7}x+\frac{8}{7}

see the attached figure to better understand the problem

Step-by-step explanation:

we have

points L(-3, 6), N(3, 2) and P(1, -8)

Part A) Find the equation of the  median from N

we Know that

The median passes through point N to midpoint segment LP

step 1

Find the midpoint segment LP

The formula to calculate the midpoint between two points is equal to

M(\frac{x1+x2}{2},\frac{y1+y2}{2})

we have

L(-3, 6) and P(1, -8)

substitute the values

M(\frac{-3+1}{2},\frac{6-8}{2})

M(-1,-1)

step 2

Find the slope of the segment NM

The formula to calculate the slope between two points is equal to

m=\frac{y2-y1}{x2-x1}  

we have

N(3, 2) and M(-1,-1)

substitute the values

m=\frac{-1-2}{-1-3}

m=\frac{-3}{-4}

m=\frac{3}{4}

step 3

Find the equation of the line in point slope form

y-y1=m(x-x1)

we have

m=\frac{3}{4}

point\ N(3, 2)

substitute

y-2=\frac{3}{4}(x-3)

step 4

Convert to slope intercept form

Isolate the variable y

y-2=\frac{3}{4}x-\frac{9}{4}

y=\frac{3}{4}x-\frac{9}{4}+2

y=\frac{3}{4}x-\frac{1}{4}  

Part B) Find the equation of the  right bisector of LP

we Know that

The right bisector is perpendicular to LP and passes through midpoint segment LP

step 1

Find the midpoint segment LP

The formula to calculate the midpoint between two points is equal to

M(\frac{x1+x2}{2},\frac{y1+y2}{2})

we have

L(-3, 6) and P(1, -8)

substitute the values

M(\frac{-3+1}{2},\frac{6-8}{2})

M(-1,-1)

step 2

Find the slope of the segment LP

The formula to calculate the slope between two points is equal to

m=\frac{y2-y1}{x2-x1}  

we have

L(-3, 6) and P(1, -8)

substitute the values

m=\frac{-8-6}{1+3}

m=\frac{-14}{4}

m=-\frac{14}{4}

m=-\frac{7}{2}

step 3

Find the slope of the perpendicular line to segment LP

Remember that

If two lines are perpendicular, then their slopes are opposite reciprocal (the product of their slopes is equal to -1)

m_1*m_2=-1

we have

m_1=-\frac{7}{2}

so

m_2=\frac{2}{7}

step 4

Find the equation of the line in point slope form

y-y1=m(x-x1)

we have

m=\frac{2}{7}

point\ M(-1,-1) ----> midpoint LP

substitute

y+1=\frac{2}{7}(x+1)

step 5

Convert to slope intercept form

Isolate the variable y

y+1=\frac{2}{7}x+\frac{2}{7}

y=\frac{2}{7}x+\frac{2}{7}-1

y=\frac{2}{7}x-\frac{5}{7}

Part C) Find the equation of the altitude from N

we Know that

The altitude is perpendicular to LP and passes through point N

step 1

Find the slope of the segment LP

The formula to calculate the slope between two points is equal to

m=\frac{y2-y1}{x2-x1}  

we have

L(-3, 6) and P(1, -8)

substitute the values

m=\frac{-8-6}{1+3}

m=\frac{-14}{4}

m=-\frac{14}{4}

m=-\frac{7}{2}

step 2

Find the slope of the perpendicular line to segment LP

Remember that

If two lines are perpendicular, then their slopes are opposite reciprocal (the product of their slopes is equal to -1)

m_1*m_2=-1

we have

m_1=-\frac{7}{2}

so

m_2=\frac{2}{7}

step 3

Find the equation of the line in point slope form

y-y1=m(x-x1)

we have

m=\frac{2}{7}

point\ N(3,2)

substitute

y-2=\frac{2}{7}(x-3)

step 4

Convert to slope intercept form

Isolate the variable y

y-2=\frac{2}{7}x-\frac{6}{7}

y=\frac{2}{7}x-\frac{6}{7}+2

y=\frac{2}{7}x+\frac{8}{7}

7 0
4 years ago
A torus is formed by rotating a circle of radius r about a line in the plane of the circle that is a distance R (> r) from th
jeyben [28]

Consider a circle with radius r centered at some point (R+r,0) on the x-axis. This circle has equation

(x-(R+r))^2+y^2=r^2

Revolve the region bounded by this circle across the y-axis to get a torus. Using the shell method, the volume of the resulting torus is

\displaystyle2\pi\int_R^{R+2r}2xy\,\mathrm dx

where 2y=\sqrt{r^2-(x-(R+r))^2}-(-\sqrt{r^2-(x-(R+r))^2})=2\sqrt{r^2-(x-(R+r))^2}.

So the volume is

\displaystyle4\pi\int_R^{R+2r}x\sqrt{r^2-(x-(R+r))^2}\,\mathrm dx

Substitute

x-(R+r)=r\sin t\implies\mathrm dx=r\cos t\,\mathrm dt

and the integral becomes

\displaystyle4\pi r^2\int_{-\pi/2}^{\pi/2}(R+r+r\sin t)\cos^2t\,\mathrm dt

Notice that \sin t\cos^2t is an odd function, so the integral over \left[-\frac\pi2,\frac\pi2\right] is 0. This leaves us with

\displaystyle4\pi r^2(R+r)\int_{-\pi/2}^{\pi/2}\cos^2t\,\mathrm dt

Write

\cos^2t=\dfrac{1+\cos(2t)}2

so the volume is

\displaystyle2\pi r^2(R+r)\int_{-\pi/2}^{\pi/2}(1+\cos(2t))\,\mathrm dt=\boxed{2\pi^2r^2(R+r)}

6 0
3 years ago
Other questions:
  • Which point on the numbee line represents the product (-4)(-2)(-1)
    13·1 answer
  • How to rewrite 11x+13y=8 in slope intercept form
    12·2 answers
  • Find each product mentally 4×5 1/8 and 7×3.8​
    6·1 answer
  • .
    5·1 answer
  • Help me plz thanksss
    6·1 answer
  • 45n=25<br> Simplify your answer as much as possible.
    10·1 answer
  • Solve for x using the<br> distributive property.<br> 4(3x - 1) = 56
    5·1 answer
  • ANSWER ASAP PLSSS
    12·1 answer
  • Trains Two trains, Train A and Train B, weigh a total of 360 tons. Train A is heavier than Train B. The difference of their weig
    9·1 answer
  • These People! I can’t do this!!! I need YOU!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!