Well lets try using negatives and positives, negatives for underground positives for above. -6 + 14 = 8 then 8 - 11 = -3. When Herman finally stops climbing he is 3 feet below ground level.
Answer:
9 i think hope it helps:)
Answer:
v = 1/(1+i)
PV(T) = x(v + v^2 + ... + v^n) = x(1 - v^n)/i = 493
PV(G) = 3x[v + v^2 + ... + v^(2n)] = 3x[1 - v^(2n)]/i = 2748
PV(G)/PV(T) = 2748/493
{3x[1 - v^(2n)]/i}/{x(1 - v^n)/i} = 2748/493
3[1-v^(2n)]/(1-v^n) = 2748/493
Since v^(2n) = (v^n)^2 then 1 - v^(2n) = (1 - v^n)(1 + v^n)
3(1 + v^n) = 2748/493
1 + v^n = 2748/1479
v^n = 1269/1479 ~ 0.858
Step-by-step explanation:
Answer:
5
Step-by-step explanation:
5
h(x) = 5 - 9x
h(8) = 5 - 9×8 ( putting value x = 8)
h(8) = 5 - 72
h(8) = -67
Answer is -67.