
We know, 1 m³ of space can hold 1000 l of the substance.
⇛ 1 m³ = 1000 l----(1)
And, 1 l is 1000 times more than 1 ml
⇛ 1 l = 1000 ml------(2)
So, From (1) and (2),
⇛ 1 m³ = 1000 × 1000 ml
⇛ 1m³ = 1000000 ml
We had to find,
⇛ 1.40 m³ = 1.40 × 1000000 ml
⇛ 1.40 m³ = 140/100 × 1000000 ml
⇛ 1.40 m³ = 1400000 ml
⇛ 1.40 m³ = 14,00,000 ml / 14 × 10⁵ ml / 1.4 × 10⁶ ml
☃️ <u>So</u><u>,</u><u> </u><u>1.40</u><u> </u><u>m</u><u>³</u><u> </u><u>=</u><u> </u><u>1</u><u>4</u><u> </u><u>×</u><u> </u><u>1</u><u>0</u><u>⁵</u><u> </u><u>m</u><u>l</u><u> </u><u>/</u><u> </u><u>1.4</u><u> </u><u>×</u><u> </u><u>10</u><u>⁶</u><u> </u><u>ml</u><u>.</u>
<u>━━━━━━━━━━━━━━━━━━━━</u>
Explanation:
2 Because visual specialization skills are important to success in so many career
fields, it is helpful to continue to build skill. What is one strategy you can use to
continue to improve your visualization skills?
Please someone help!!!
Question: The question is incomplete. Below is the complete question and the answer;
While ethanol (CH3CH2OH is produced naturally by fermentation, e.g. in beer- and wine-making, industrially it is synthesized by reacting ethylene CH2CH2) with water vapor at elevated temperatures. A chemical engineer studying this reaction fills a 50.0 L tank at 22. °C with 24. mol of ethylene gas and 24. mol of water vapor. He then raises the temperature considerably, and when the mixture has come to equilibrium determines that it contains 15.4 mol of ethylene gas and 15.4 mol of water vapor The engineer then adds another 12. mol of water, and allows the mixture to come to equilibrium again. Calculate the moles of ethanol after equilibrium is reached the second time. Round your answer to 2 significant digits.
Answer:
Number of moles of ethanol = 11 mol
Explanation:
SEE THE ATTACHED FILE FOR THE CALCULATION
Answer: 1-Propene has
eight sigma bonds and
one pi bond.
Explanation: The lewis structure of 1-Propene is shown below. All sigma bonds are highlighted by
blue color and the pi bond is highlighted by
red color.
Carbon having four unpaired electrons in its excited state can form four covalent (sigma bonds) bonds. In given structure the orbitals containing unpaired electron in sp³ hybridized C undergo head to head overlap with three hydrogen atoms having single unpaired electron and orbital of other sp² hybridized carbon in same fashion. So, four sigma bonds are formed by sp³ hybridized carbon atom.
The doubly bonded carbon atoms also form sigma bond but two unpaired electrons of these two carbons undergo the formation of pi bond. This pi bond forms when the orbitals overlap along the plane perpendicular to the existing sigma bond resulting in the formation of single pi bond.
Answer: CH3CH3Li is in fact Ionic!
Explanation: