Answer:
1.79 mol.
Explanation:
- For the balanced reaction:
<em>2NaCl + F₂ → 2NaF + Cl₂.
</em>
It is clear that 2 mol of NaCl react with 1 mol of F₂ to produce 2 mol of NaF and 1 mol of Cl₂.
- Firstly, we can get the no. of moles of F₂ gas using the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm (P = 1.2 atm).
V is the volume of the gas in L (V = 18.3 L).
n is the no. of moles of the gas in mol (n = ??? mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (299 K).
∴ no. of moles of F₂ (n) = PV/RT = (1.2 atm)(18.3 L)/(0.0821 L.atm/mol.K)(299 K) = 0.895 mol.
- Now, we can find the no. of moles of NaCl is needed to react with 0.895 mol of F₂:
<em><u>Using cross multiplication:</u></em>
2 mol of NaCl is needed to react with → 1 mol of F₂, from stichiometry.
??? mol of NaCl is needed to react with → 0.895 mol of F₂.
∴ The no. of moles of NaCl needed = (2 mol)(0.895 mol)/(1 mol) = 1.79 mol.
Let's hope she didn't watch it without me or i will never be speaking to her again :))
Answer:
a. Cyclohexanone
Explanation:
The principle of IR technique is based on the <u>vibration of the bonds</u> by using the energy that is in this region of the electromagnetic spectrum. For each bond, there is <em>a specific energy that generates a specific vibration</em>. In this case, you want to study the vibration that is given in the carbonyl group C=O. Which is located around 1700 cm-1.
Now, we must remember that the <u>lower the wavenumber we will have less energy</u>. So, what we should look for in these molecules, is a carbonyl group in which less energy is needed to vibrate since we look for the molecule with a smaller wavenumber.
If we look at the structure of all the molecules we will find that in the last three we have <u>heteroatoms</u> (atoms different to carbon I hydrogen) on the right side of the carbonyl group. These atoms allow the production of <u>resonance structures</u> which makes the molecule more stable. If the molecule is more stable we will need more energy to make it vibrate and therefore greater wavenumbers.
The molecule that fulfills this condition is the <u>cyclohexanone.</u>
See figure 1
I hope it helps!
Answer:
Boron has a larger radius and the protons in carbon exert more pull.
Explanation:
Remember than elements have greater radius as they are closer to the bottom left corner, so boron would have the larger radius here. Carbon has a smaller radius, which makes it easier for the protons in carbon to exert more pull.