Answer:
42 L
Explanation:
de los parámetros en la pregunta;
V1 = 358L
T1 = 152 ° C + 273 = 425 K
P1 = 470 mmHg × 1 atm / 760 mmHg = 0.6atm
V2 =?
P2 = 6 atmósferas
T2 = 500 K
P1V1 / T1 = P2V2 / T2
P1V1T2 = P2V2T1
V2 = P1V1T2 / P2T1
V2 = 0,6 × 358 × 500/6 × 425
V2 = 107400/2550
V2 = 42 L
The independent variable is the variable being changed. In this case, the independent variable is the calculators. The dependent variable is essentially what you are looking for that <u>depends</u> on the independent variable. In this case it would be time. The constant variable or controlled variable are something that doesn't change and would skew the results. One may be the exact same problem for both groups. Try to come up with two more.
Answer:
0.084 M
Explanation:
Using the Henderson-Hasselbalch equation for a buffer ( a buffer is solution contain a weak acid and it conjugate base; the solution resist change in pH)
pH = pKa + log ( base/acid)
4.9 - 4.76 =log ( base / acid)
10^0.14 = ( base / acid)
1.38 = (base / acid)
since there is 0.2 M in the buffer solution
the concentration of acid =
× 0.2 = 0.084 M
The mass of a nickel coin is 5 g.
1 mol of Ni weighs 58 g. 1 mol contains 6.022 x 10²³ atoms of Ni.
therefore in 58 g there are 6.022 x 10²³ atoms of Ni
then in 5 g the number of Ni atoms are - 6.022 x 10²³ /58 x 5 = 5.2 x 10²² Ni atoms
Therefore number of Ni atoms are 5.2 x 10²² atoms in a nickel coin
The solution before dilution and after dilution contains same number of moles, and water is added for dilution.
Option B
<h3><u>Explanation:</u></h3>
Suppose before dilution, the solution contains x moles of KCl in Y liter of water. Now as the concentration got halved, then the solution contains x moles of KCl in 2Y kiters of solution. So the number of moles of KCl in the solution remained constant.
Again, as the solution is diluted to half of the concentration, water must have been added with the solution to make it dilute.