Answer:
6.73g
Explanation:
T½ = 5.2days
No = 80g
N = ?
T = 20.8days
We'll have to find the disintegration constant first so that we can plug it into the equation that will help us find the mass of the sample after 20.8 days
T½ = In2 / λ
T½ = half life
λ = disintegration constant
λ = In2 / T½
λ = 0.693 / 5.8
λ = 0.119
In(N / No) = -λt
N = final mass of the radioactive sample
No = initial mass of the sample
λ = disintegration constant
t = time for the radioactive decay
In(N/No) = -λt
N / No = e^-λt
N = No(e^-λt)
N = 80 × e^-(0.119 × 20.8)
N = 80 × e^-2.4752
N = 80 × 0.0841
N = 6.728g
The mass of the sample after 20.8 days is approximately 6.73g
Brhrhrhfhfhrhr r tbrhrnrbd
Answer: I would say that the answer is C.) P waves reflect as they travel through Earth.
Explanation:
Answer: The volume of the balloon at the center of the typhoon is 41.7L.
Note: The complete question is given below;
If a small weather balloon with a volume of 40.0 L at a pressure of 1.00 atmosphere was deployed at the edge of Typhoon Odessa, what was the volume of the balloon when it reached the center?
The severity of a tropical storm is related to the depressed atmospheric pressure at its center. In August 1985, Typhoon Odessa in the Pacific Ocean featured maximum winds of about 90 mi/hr and pressure that was 40.0 mbar lower at the center than normal atmospheric pressure. In contrast, the central pressure of Hurricane Andrew (pictured) was 90.0 mbar lower than its surroundings when it hit south Florida with winds as high as 165 mi/hr.
Explanation:
Since no temperature changes were given, it is assumed to be constant. Therefore, Boyle's law which describes the relationship between pressure and volume is used to determine the new volume at the center of Typhoon Odessa. Mathematically, Boyle's law states that; P1V1 = P2V2
Assuming 1atm = 1 bar, 1mbar = 0.001atm, 40mbar = 0.040atm
P1 = 1.0atm, V1 = 40.0L, P2 = 1atm - 0.040atm = 0.960atm, V2 = ?
Using P1V1 = P2V2
V2 = P1V1/P2
V2 = 1.0 * 40.0 / 0.96
V2 = 41.67L
Therefore, the volume of the balloon at the center of the typhoon is 41.7L.
Based on bond type, CaCI2 has the highest melting point.