Answer: Strictly a laboratory analysis and can only be done using the data obtained during analysis
Explanation:
To find a solution to this problem, you need to use the data collected during the lab work. A guide could be finding the possible forms of hydrated copper chlorides in reference books. Since it's also a lab work, you can definitely compare your data with lab mates.
The formula CuxCly.zH₂O and its name chloride hydrate already gives you an idea of the possibilities of the value of the integers, hence you can take a good guess for the identity of the unknown salt and calculate the theoretical formular weight for it. From the that you can proceed to also find the mass of water and copper from your lab analysis.
5mg in liter is 5 ppm
Explanation: 1 ppm is one part per million.
1 ppm is 1 mg is one part of million from 1 kg = 1000 000 mg
1 litre water is 1. Kg.
<h3>Solution-:</h3>
- option D
- maintains a constant volume.
#<em>o</em><em>f</em><em>f</em><em>i</em><em>c</em><em>a</em><em>i</em><em>l</em><em> </em><em>Nazo</em>
<em>ll </em><em>Radhe</em><em> Radhe</em><em> ll</em>
the answer is true the first one
Answer:
By heating the mixture to maximum boiling point and then the solution is distilled at a constant temperature without having a change in composition.
Explanation:
An azeotropic mixture is also called a constant boiling mixture and it is a mixture of two or more liquids whose proportions cannot be altered by simple distillation due to the fact that when an azeotropic mixture is boiled, the vapor has the same proportions of constituents as the unboiled mixture.
Now, maximum boiling azeotropic mixture are the solutions with negative deviations that have an intermediate composition for which the vapor pressure of the solution is minimum and as a result, the boiling point is maximum. At that point, the solution will distill at a constant temperature without having a change in composition.