Answer:
Angle of ray makes with the vertical is 62.1 degree
Explanation:
As per the ray diagram we know that the angle of incidence on oil brine interface will be given as


now by Snell'a law at that interface we have

now we will have


now this is the angle of incidence for oil air interface
so now again by Snell's law we will have



Answer:
<u>1000N</u>
Explanation:
It takes 200N to expand 15cm of one string.
For 5 strings, force required =
200 x 5 = <u>1000N</u>
Answer:
5.2 m
Explanation:
from the question we are given the following
depth of pool (d) = 3.2 m
height of laser above the pool (h) = 1 m
point of entry of laser beam from edge of water (l) = 2.5 m
we first have to calculate the angle at which the laser beam enters the water (∝),
tan ∝ = \frac{1}{2.2}
∝ = 24.44 degrees
from the attached diagram, the angle with the normal (i) = 90 - 24.4 = 65.56 degrees
lets assume it is a red laser which has a refractive index of 1.331 in water, and with this we can find the angle of refraction (r) using the formula below
refractive index = \frac{sin i}{sin r}
1.331 = \frac{sin 65.56}{sin r}
r = 43.16 degrees
we can get the distance (x) from tan r = \frac{x}{3.2}
tan 43.16 = \frac{x}{3.2}
x = 3 m
To get the total distance we need to add the value of x to 2.2 m
total distance = 3 + 2.2 = 5.2 m
Answer: 1.348 meters
Explanation: Although the sign is missing from the location of the 4.00 kg object, it is assumed to be positive. The net moment of all the objects about the center of mass must be zero. Let the center of mass be on the y axis at a point c . Adding the four moments together, we get:
(2.00)(3.00−c)+(3.00)(2.50−c)+(2.50)(0−c)+(4.00)(0.500−c)=0
6.00−2.00c+7.50−3.00c+0−2.50c+2.00−4.00c=0
11.5c=15.50
c= 1.348 metres
The center of mass is on the y axis at y = 1.348 metres.