Answer:
a) I = (
+
) L² , b) w = (\frac{27 M}{18 m} + 2)⁻¹ Lv₀
Explanation:
a) The moment of inertia is a scalar that represents the inertia in circular motion, therefore it is an additive quantity.
The moment of inertia of a rod held at one end is
I₁ = 1/3 M L²
The moment of inertia of the mass at y = L
I₂ = m y²
The total inertia method
I = I₁ + I₂
I = \frac{1}{3} M L² + m (\frac{2}{3} L)²
I = (
+
) L²
b) The conservation of angular momentum, where the system is formed by the masses and the bar, in such a way that all the forces during the collision are internal.
Initial instant. Before the crash
L₀ = I₂ w₀
angular and linear velocity are related
w₀ = y v₀
w₀ =
L v₀
L₀ = I₂ y v₀
Final moment. After the crash
= I w
how angular momentum is conserved
L₀ = L_{f}
I₂ y v₀ = I w
substitute
m (
)² (\frac{2L}{3} v₀ = (
+
) L² w
m L³ v₀ = (
+
) L² w
m L v₀ = (
+
) w
L v₀ =
w
w = (\frac{27 M}{18 m} + 2)⁻¹ Lv₀
Answer:
The final velocity of the object after 2 seconds is 30 m/s
Explanation:
Given;
constant downward acceleration, a = 10 m/s²
initial velocity of the object falling down, v = 10 m/s
time of fall, t = 2 s
The final velocity of the object is given by;
v = u + at
where;
v is the final velocity
v = 10 + (10)(2)
v = 10 + 20
v = 30 m/s
Therefore, the final velocity of the object after 2 seconds is 30 m/s
The teardrop could be an example as it was designed for that purpose, and most notably planes and such aero traveling vehicles
D all of the above applies to the functions of the nervous system.
Answer:
The direction of the magnetic field at point Z; Into the screen
Explanation: