Answer:
so in a given orbital there can be 3 electrons.
Explanation:
The Pauli exclusion principle states that all the quantum numbers of an electron cannot be equal, if the spatial part of the wave function is the same, the spin part of the wave function determines how many electrons fit in each orbital.
In the case of having two values, two electrons change. In the case of three allowed values, one electron fits for each value, so in a given orbital there can be 3 electrons.
Answer:
install socrati it give you all answers
Explanation:
Answer:
ΔF=125.22 %
Explanation:
We know that drag force on the car given as

=Drag coefficient
A=Projected area
v=Velocity
ρ=Density
All other quantity are constant so we can say that drag force and velocity can be given as

Now by putting the values



Percentage Change in the drag force



ΔF=125.22 %
Therefore force will increase by 125.22 %.
Answer:
ee that the lens with the shortest focal length has a smaller object
Explanation:
For this exercise we use the constructor equation or Gaussian equation
where f is the focal length, p and q are the distance to the object and the image respectively.
Magnification a lens system is
m =
= -
h ’= -\frac{h q}{p}
In the exercise give the value of the height of the object h = 0.50cm and the position of the object p =∞
Let's calculate the distance to the image for each lens
f = 6.0 cm

as they indicate that the light fills the entire lens, this indicates that the object is at infinity, remember that the light of the laser rays is almost parallel, therefore p = inf
q = f = 6.0 cm
for the lens of f = 12.0 cm q = 12.0 cn
to find the size of the image we use
h ’= h q / p
where p has a high value and is the same for all systems
h ’= h / p q
Thus
f = 6 cm h ’= fo 6 cm
f = 12 cm h ’= fo 12 cm
therefore we see that the lens with the shortest focal length has a smaller object