1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iren [92.7K]
3 years ago
15

How many Joules of energy are required to run a 100W light bulb for one day?

Physics
1 answer:
Vlada [557]3 years ago
4 0

The following are the answers to the questions presented:

a. The joules of energy required to run a 100W light bulb for one day is 8640000J
b. The amount of coals that has to be burned to light that light bulb for one day is 0.96kg

The solution would be like this for this specific problem:

<span>P=<span>W/s</span>→W=Pt=100W1day <span><span>24h/</span><span>1day </span></span><span><span>3600s/</span><span>1h</span></span>=8640000J</span>

<span>W=<span>30/100</span>wm→m=<span><span>100W/</span><span>30w</span></span>=<span><span>100×8640000J/</span><span>30×30×<span>10in thepowerof6 </span><span>J/<span>kg</span></span></span></span>=0.96kg</span>

<span>I am hoping that these answers have satisfied your queries and it will be able to help you in your endeavors, and if you would like, feel free to ask another question.</span>

You might be interested in
It took 3.5 hours for a train to travel the distance between two cities at a velocity
Amiraneli [1.4K]

Answer:

420

Explanation:

420 because 120 x 3 = 360

120/2 = 60 and 360 + 60 = 420

I hope this helps you and please consider giving me brainliest :)

7 0
3 years ago
A string with a mass density of 3 * 10^-3 kg/m is under a tension of 380 N and is fixed at both ends. One of its resonance frequ
Delvig [45]

Answer:

(a) the fundamental frequency of this string is 65 Hz

(b) the harmonics of the given frequencies are third and fourth respectively.

(c) the length of the string is 2.74 m

Explanation:

Given;

mass density of the string, μ = 3 x 10⁻³ kg/m

tension of the string, T = 380 N

resonating frequencies, 195 Hz and 260 N

For the given resonant frequencies;

195 = \frac{n}{2l} \sqrt{\frac{T}{\mu} } ---(1)\\\\260 = \frac{n+1}{2l} \sqrt{\frac{T}{\mu} } ---(2)\\\\divide \ (2) \ by (1)\\\\\frac{260}{195} = \frac{n+1 }{n} \\\\260n = 195(n+1)\\\\260 n = 195 n + 195\\\\260n - 195n = 195\\\\65n = 195\\\\n = \frac{195}{65} \\\\n = 3

(c) From any of the equations, solve for Length of the string (L);

195 = \frac{n}{2l} \sqrt{\frac{T}{\mu} } \\\\195 = \frac{3}{2l}\sqrt{\frac{380}{3\times 10^{-3}} } \\\\l = \frac{3}{2\times 195}\sqrt{\frac{380}{3\times 10^{-3}} }\\\\l = 2.74 \ m

(a) the fundamental frequency is calculated as;

f_o = \frac{1}{2l} \sqrt{\frac{T}{\mu} } \\\\f_o = \frac{1}{2\times 2.74} \sqrt{\frac{380}{3\times 10^{-3} } }\\\\f_o =  65 \ Hz

(b) harmonics of the given frequencies;

the first harmonic (n = 1) = f₀ = 65 Hz

the second harmonic (n = 2) = 2f₀ = 130 Hz

the third harmonic (n = 3) = 3f₀ = 195 Hz

the fourth harmonic (n = 4) = 4f₀ = 260 Hz

Thus, the harmonics of the given frequencies are third and fourth respectively.

7 0
3 years ago
Compare the strong and weak megnetic field
garri49 [273]
The strong magnetic fields is Long rang attractive power Reuther then week magnetic field.
7 0
3 years ago
Assignment
Igoryamba

Answer:

step bro was stuck on the elevator

Explanation:

5 0
2 years ago
A satellite orbits the earth a distance of 1.50 × 107 m above the planet's surface and takes 8.65 hours for each revolution abou
kupik [55]

Answer:

The acceleration of the satellite is 0.87 m/s^{2}

Explanation:

The acceleration in a circular motion is defined as:

a = \frac{v^{2}}{r}  (1)

Where a is the centripetal acceleration, v the velocity and r is the radius.

The equation of the orbital velocity is defined as

v = \frac{2 \pi r}{T} (2)

Where r is the radius and T is the period

For this particular case, the radius will be the sum of the high of the satellite (1.50x10^{7} m) and the Earth radius (6.38x10^{6} m) :

r = 1.50x10^{7} m+6.38x10^{6}m

r = 21.38x10^{6}m

Then, equation 2 can be used:

T = 8.65 hrs \cdot \frac{3600 s}{1hrs} ⇒ 31140 s

v = \frac{2 \pi (21.38x10^{6}m)}{31140s}

v = 4313 m/s

Finally equation 1 can be used:

a = \frac{(4313m/s)^{2}}{21.38x10^{6}m}    

a = 0.87 m/s^{2}

Hence, the acceleration of the satellite is 0.87 m/s^{2}

6 0
3 years ago
Other questions:
  • Please help<br> Quickly!!!..
    6·1 answer
  • When the angle of elevation of the sun is 64°, a pole that is tilted at an angle of 19° directly away from the sun casts a shado
    12·2 answers
  • Which best describes cosmic microwave background radiation? radiation thought to exist but not yet measured radiation predicted
    8·1 answer
  • The bulk modulus of water is B = 2.2 x 109 N/m2. What change in pressure ΔP (in atmospheres) is required to keep water from expa
    6·1 answer
  • A cart moves along a track at a velocity of 3.5 cm/s. When a force is applied to the cart, its velocity increases to 8.2 cm/s. I
    5·1 answer
  • How many cups are in 4 gallons
    9·1 answer
  • Write the importance of international bureau of weight and measures in the country​
    8·1 answer
  • Use the list to answer the question.
    14·2 answers
  • Two particles of a gas collide. Why is this considered an elastic collision? (1 point)
    13·2 answers
  • Which organelle is unique to plants and captures light energy for photosynthesis?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!