This drag force is always opposite to the object's motion, and unlike friction between solid surfaces, the drag force increases as the object moves faster.
Answer:
Explanation:
average speed more than 25.0m/s.
To solve this problem we will apply the concepts related to wavelength as the rate of change of the speed of the wave over the frequency. Mathematically this is

Here,
v = Wave velocity
f = Frequency,
Replacing with our values we have that,

\lambda = 0.68m
The distance to move one speaker is half this

Therefore the minimum distance will be 0.34m
So this is easy to calculate when you split the velocity into x and y components. The x component is going to equal cos(53) * 290 and the y component is going to equal sin(53)*290.
The x location therefore is 290*cos(53)*35 = 6108.4m
The y location needs to factor in the downwards acceleration of gravity too, which is 9.81m/s^2. We need the equation dist. = V initial*time + 0.5*acceleration*time^2.
This gives us d=290*sin(53)*35 + (0.5*-9.81*35^2)=2097.5m
So your (x,y) coordinates equals (6108.4, 2097.5)
True if you have proper stance and use your body the right way then the ball will be below your waist to allow for more control.